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PREFACE

This introduction to projective geometry can be understood by any-
one familiar with high-school geometry and algebra. The restriction to

real geometry of two dimensions makes it possible for every theorem to

be illustrated by a diagram. The early books of Euclid were concerned
with constructions by means of ruler and compass ; this is even simpler,

being the geometry of the ruler alone. The subject is used, as metrical
geometry was by Euclid, to reveal the development of a logical system
from primitive concepts and axioms. Accordingly the treatment is

mainly synthetic; analytic geometry is confined to the last two of the
twelve chapters.

The strict axiomatic treatment is followed far enough to show the
reader how it is done, but is then relaxed to avoid becoming tedious.

Continuity is introduced in Chapter 3 by means of an unusual but
intuitively accciitable axiom. A more thorough treatment is reserved
for Chapter 10, at which stage the reader may be expected to have
acquired the necessary maturity for appreciating the subtleties

involved.

The spirit of the book owes much to the great Projective Geometry of

Veblen and Young. That dealt with geometries of various kinds in any
number of dimensions; but the present book may be found easier be-
cause one particular geometry has been extracted for detailed con-
sideration. Chapters 5 an<l 6 constitute what is perhaps the first sys-
tematic account in English of von Staudt’s synthetic approach to
])olaritics and conics as amplified by Enriques: A polarity is defined
as an involutory point-to-line correspondence preserving incidence,
and a conic as the locus of points that lie on their polars, or the enve-
lope of lines that pass through their poles. This definition for a conic
gives the whole figure at once ami makes it immediately self-<lual, a
locus and an envelope, whereas Steiner’s definition assigns a special
role to two points on the conic, obscuring its essential symmetry.
Moreover, the restriction to real geometry makes it desirable to con-
sider not only the hyperbolic polarities which determine conics but also
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the elliptic polarities which do not. The latter are important because

of their application to elliptic geometry. (In complex geometry this

distinction is unnecessary, for an elliptic polarity determines an imagi-

nary conic.) The linear construction for the polar of a given point

(5-64) was adapted from a question in the Cambridge Mathematical
Tripos, 1934, Part II, Schedule A.
The treatment of conics is followed in Chapter 8 by a description of

affine geometry, where one line of the projective plane is singled out
as a line at infinity

y

enabling us to define parallel lines. It is interesting

to see how much of the familiar content of metrical geometry depends
only on incidence and parallelism and not on perpendicularity. This
includes the theory of area; the distinction between the ellipse, para-

bola, and hyperbola; and the theory of diameters, asymptotes, etc.

The further specialization to Euclidean geometry is made in Chapter 9

by singling out an absolute involution in the line at infinity.

Chapter 10 introduces a revised axiom of continuity for the projec-

tive line, so simple that only eight words are needed for its enunciation.

(This has not been published elsewhere save as an abstract in the

Bulletin of the American Mathematical Society.) Chapter 1 1 develops
the formal addition and multiplication of points on a conic and the

synthetic derivation of coordinates. Finally, Chap. 12 contains a veri-

fication that the plane of real homogeneous coordinates has all the

properties of our synthetic geometry. This proves that the chosen
axioms are as consistent as the axioms of arithmetic.

Almost every section of the book ends with a group of problems in-

volving the latest ideas that have been presented. All the difficult

problems are followed by hints for solving them. The teacher can ren-

der them more difficult by taking them out of their context or by
omitting the hints.

I take this opportunity for expressing my thanks to H. G. Forder
and Alan Robson for reading the manuscript and suggesting improve-
ments; also to Leopold Infeld and Alex Rosenberg for helping with the

proofs.

H. S. M. CoxETEU
Toronto, Ont.

February, 1949
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CHAPTER 1

A COMPARISON
OF VARIOUS KINDS OF GEOMETRY

1»1 Introduction. The ordinary geometry taught in high school,

dealing with circles, angles, parallel lines, similar triangles, and so on,

is called Euclidean geoTnetry because it was first collected into a syste-

matic account by the Greek geometer Euclid, who lived about 300 b.c.

His treatise. The Elements, is one of the most famous books in the world;
probably the Bible is its only rival in the number of copies made and
the number of languages into which it has been translated. With a few
unimportant changes it is still suitable for the instruction of the young.

During the nineteenth century there was a tendency to extract from
Euclidean geometry certain ideas of a particularly simple nature, espe-

cially ideas that did not involve measurement of distance or angle, and
to use these for building up more general systems, notably afine
geometry and projective geometry. The meaning of these terms will be
clear after we have examined certain kinds of projection. For that
purpose we shall need some intuitive notions of solid geometry; but
after the present chapter we shall be concerned solely with plane
geometry.

These new systems are said to be more general because, besides

throwing fresh light on Euclidean geometry itself, they are capable of

extension in other directions by the introduction of new kinds of

ineasiircmcnt. Affine geometry can be developed into Minkowski’s
geometry of the space-time continuum considered in the special theory
of relativity, and ])rojectivc geometry can be devclo7)ed into the
various kinds of “non-EucIidcan ” geometry that are relevant to more
modern ideas of relativistic cosmology. This remark is intended merely
to show why it is worth while to study these fundamental geometries;

the extensions themselves are beyond the scope of this book.

1*2 Parallel Projection. Two figures in distinct planes are said

to be derived from each other by parallel projection if corresponding
1
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points can be joined by parallel lines.* (This is essentially what hap-
pens when the sun casts a shadow on the ground; e.g.^ when a circular

coin casts an elliptic shadow, the lines joining each point of the circle

to its shadow on the ellipse are parallel.) If the two planes are parallel,

the two figures will be exactly alike (congruent); otherwise they may
have somewhat different shapes, but straight lines remain straight,

tangents to curves remain tangent, parallel lines remain parallel,

bisected segments remain bisected, and equal areas remain equal. In
other words, the properties of straightness, tangency, parallelism,

bisection, and equality of area are invariant under parallel projection.

Such properties are the subject matter of affi,ne geometry. (This use of

the word affine is due to the Swiss mathematician Euler, 1707—1783.)

On the other hand, the content of ‘projective geometry is still more
restricted, being confined to those properties (such as straightness and
tangency) which remain invariant under central projection.

1*3 Central Projection.! Two figures in distinct planes are said

to be derived from each other by central projection if corresponding
points can be joined by concurrent lines, all passing through a fixed

point L. (This is essentially what happens when a lamp casts a shadow
on a wall or on the floor. The circular rim of a lampshade usually gives

a larger circular or elliptic shadow on the floor and a hyperbolic shadow
on the nearest wall.) If the two planes are parallel, the two figures will

be similar and the invariant geometry will again be affine. So we shall

assume the two planes to be nonparallel; then the plane through L
parallel to one of the two planes will meet the other in a definite line

called the vanishing line for a reason that will soon be explained.

Figure 1'3a represents a box standing on a table with a lamp
suspended inside the lid at L. A figure is drawn opaquely on the trans-
parent vertical side oP of the box so as to cast a shadow on the hori-

zontal plane of the table top. Clearly, the shadow is derived from the
original figure by central projection from L. In general, two intersecting
lines project into two intersecting lines, just as in the case of parallel

projection; but an exception arises when the given lines intersect on the
special line o, which lies in the horizontal plane through L. Such lines,

say AP and AQ, project into parallel lines p and q through P and Q,
both parallel to LA. Conversely, any two parallel lines on the table top
are each coplanar with the parallel line through i, say LA ; therefore,
unless they are parallel to o, they must be projected images of two
lines through a definite point A on o.

* We sliall always txse the word line in the sense of a straight line of unlimited extent.

t Cremona (Ref. 8, p. S). (All references are listed in the Bibliography on pp. 189—190.

j
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Ttiis pi’ocess of central projection relates points in the vertical and
Jj.orizontBJ planes in such a way that the join of two corresponding

points always passes through i. Points in the vertical plane below the

table top project into points inside the box, and points X above o

project into points behind the box (on XL produced), although now the

notion of a shadow breaks down. Thus the only points that have no

images are those on the line o, which is consequently called the vanish-

i/rtg li'The.

Fig. l-iiA

A circle in the vertical plane is joined to L by a cone (usually an
obliqne circular cone); thus it projects into a conic section, or conic.

If the circle <loes not meet o, the conic is a closed oval curve, viz.^ an
ellrpse. If the circh^ cuts o in two distinct points, the conic is a hy-perhola.,

which has tw<) briinohes arising from the arcs below and above o. (The
latter brancdi is b(‘liin<l the l>ox.) Finally, if the circle touches o (as in

Fig- I ‘3a), tlie conic is a parabola, which has only one branch but is

not closed. Note’; that otlu'r tangents to the circle (such as /) project
into tangents to tlK‘ conic. VVe shall not he surj)riHed to find that the
role of conies in projcctisn* g(‘omctry is almost as vital as the role of
circles in ICucIidc-an g<‘oin(‘try, though actually we shall not make use of
them till C^hup. ().

VV^e have tak<‘n tin* i)lanc nl* lo he v^<‘rtic»il for simj)Iicily. An ohlicpic
plane could l>e usc<l just as \v<‘lL
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These ideas formed the foundation for the work of a remarkable
Frenchman, Jean Victor Poncelet (1788-1867), who fought in Napo-
leon’s Russian campaign (181£) until the Russians took him prisoner.
Being deprived of all books, he decided to reconstruct the whole science
of geometry. The result was his epoch-making Traite des proprietes
projectives des figures,* which was published in 1822.

EXERCISES

1. Lines parallel to the vanishing line remain parallel after projection, l)ut
any other parallel lines project into intersecting lines. Show how to detenninc
their point of intersection.

2. Let a circle cut the vanishing line in A and B. Observe how the tangents
at A and B project into the asymptotes of the hyperbola, f

1-4 The Lme at Infinity. In Sec. 1-2 we defined affine geometry
as consisting of those propositions of Euclidean geometry which ret ain
their meaning and validity after parallel projection; thus every
proposition of affine geometry holds also in Euclidean geometry, biit
other propositions of Euclidean geometry (such as Euclid I. 1 and 5)
are essentially meaningless in affine geometry. Somewhat similarly,
projective geometry includes all propositions of affine gc'ometry that
retain their meaning and validity after central proj(‘ction; but that, is
not the whole story. Some statements arc true in projective g<‘omet ry
but false in affine geometry. The most important instance is: “Any
two lines in a plane have a point of intersection.” This fails in affine
geometry because the two lines might be parallel. The projective state-
ment IS validated by inventing a new kind of “point” so as to be able
to say that parallel lines have a common point at in/lniti/: llu* i)rojecte<l
image of a point on the vanishing line. This vitally important concept
IS due to the great German astronomer Kepler (1571 -KJtJO).
We often think of a line as consisting of all t he points on it i r nrange of points. It is equally useful to think of a point as consist iug ofa 1 the lines through it, z.e., a pencil of lines. Statements about, j)oints

are easily translated into statements about pencils; c.</., "Two iioinls

me. Lmes through^ (m the plane eP of J.'ig, i-ju) pr„j,.ol i.,l„ parallel
I es (such as p and q) on the horizontal i)lanc. If we agre<. to call I lu-sea permlofparallds, we may say that a pencil alway,s proj.-el.s inlo'apenci . en statements about such jiencils arc transhdvd back into
* Poncelet (Ref. 29).

t who have not otudiod the hyperboh, lhi« oxerri.,,,.
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statements about points, we have to admit points at infinity as well as

ordinary points. In fact, we call the pencil of parallels a point at infinity,

denote it by A\ and call it the projected image of the ordinary point

A on the vanishing line o.

In this manner we have extended the meaning of the word 'poird so

as to be able to say that any two coplanar lines intersect in a point.

Similarly, we extend the meaning of the word line so as to be able to

say that any two planes intersect in a line. If the two planes happen to

be parallel, this is a line at infinity. Since we have agreed to call A' the

projected image of A, all points at infinity in the plane pq lie also in the

parallel plane Lo and form a “range” on the line at infinity, which is

the intersection of the two parallel planes, i.e., the projected image of

the vanishing line o. However, there seems to be a paradox here: we
have agreed that the point at infinity A' is really only another name for

the pencil of lines parallel to ?>, and yet we have declared that it lies

in the plane Lo, which certainly does not contain these lines. The
explanation is that for brevity we have oversimplified the account.

For a complete treatment of “ideal elements” we should have to con-

sider the whole space, using bundles of lines and planes {i.e., all the lines

and planes through a given point or parallel to a given line*) instead

of pencils of lines. Then a “point” is said to lie in a plane if the plane

belongs to the bundle; and in the case of a bundle of parallels this

merely means that the plane contains a line in the direction of the

bundle. When we restrict consideration to a single plane, the bundle
is replaced by a pencil, all the lines of an ordinary pencil contain differ-

ent points at infinity (which belong equally to the respectively parallel

lines of any other ordinary pencil), and all these points at infinity are

to be regarded as a range on the line at infinity. We can treat the points

at infinity just like any other range of points so long as we are dealing

with properties that are invariant under central projection.

By introducing these new elements we have enlarged the affine

plane (in which both the affine and Euclidean geometries operate) so

as to obtain the projective plane, which has simpler properties of inci-

dence. For other purposes we might choose different ways to enlarge

the affine plane, but the corresponding geometries would be outside

the scope of this book.

* Any two coplansir lines (intersecting or parallel) deterir>ine such a bundle, which
contains the intersections of all the planes through one line with all the planes through

the other [see Coxeter (Ref. C, p. lOff)]. The analytic aspect of i<leal elements is neatly

described by Hardy (Ref. 16, p. 440).
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EXERCISE

Which of the following propositions belong to Euclidean geometry, which

to affine, and which to projective ?

a. Four lines of general position have six points of intersection.

h. If lines AB and CD intersect, then AC and BD intersect.

c. The diagonals of a parallelogram bisect each other.

d. The three medians of a triangle have a common point.

e. The three altitudes of a triangle have a common point.

/. The angle in a semicircle is a right angle.

1*6 Desargues’ Two-triangle Theorem. If the three sides of one

triangle are parallel to the three sides of another, the two triangles are.

of course, similar. Thus the part of Euclid’s Book VI that deals with

similar and similarly situated figures belongs to alfine geometry. The
following theorem is easily proved in this manner:

1»61 Let PQR and P'Q'R' be two triangles {in the affine plane) with

QR parallel to Q'R' and RP parallel to R'P't while the joins PP\ QQ'y

RR' are concurrent. Then PQ is parallel to P'Q'. ’

Proof: Let 0 be the common point of PP', QQ', RR', as in Fig. 1 -5 a.

Applying Euclid VI. 2 to triangles QOR and ROP, we have

OQ' __ OR' _ OP'

OQ OR OP'

Hence the triangles POQ and P'OQ' are similar, and their corresponding

sides PQ and P'Q' are parallel.

This affine theorem has a projective generalization that is very

important

:
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1‘62 Desargues’ Two-triangle Theorem. If two triangles have
corres'ponding vertices joined hy concurrent lines, then the intersections of
corresponding sides are collinear.

In other words, if PP', QQ\ RK all pass through one point 0, as in
Fig. 1-5b, then the intersections

A == QR' q'R\ B = RP‘ R'P\ C = PQ • P'Q'

all lie on one line.

Proof: Imagine the figure drawn on the plane oP of Fig. 1'3a, with
AB for vanishing line. By projection onto the horizontal plane we
obtain two triangles having two pairs of parallel sides, as in 1-51. We
conclude that their remaining sides are parallel. Since the sides PQ
and P'Q' of the original triangles project into these parallel lines, their

point of intersection C must lie on the vanishing line AB, as required.

Of course, 1*51 is just a special case of 1*52, obtained by taking AB to be
the line at infinity. In projective geometry the line at infinity is treated like

any other line; therefore, if the corresponding sides meet in collinear points in

this special case, they must still do so for any position of AB. In this spirit,

instead of projecting the figure onto another plane, we could say, “Make the

plane affine by choosing AB as the line at infinity.”

Since we shall eventually take Desargues* theorem (our 1*52) as an
axiom, it seems worth while to give an alternative proof: von Staudt’s

projective three-dimensional proof. First, we observe that the theorem

is almost obvious when applied to two triangles in distinct planes; for

in that case the points ..-1, B, C all lie in the plane PQR and also in the

plane P'Q'R', and therefore they all lie on the line of intersection

PQR ' P'Q'R'. The theorem for triangles in one plane arises as a limit-

ing case; but if we prefer not to use such considerations of continuity, we
may proceed as follows : Take any two points S and S' on a line through

0 outside the plane of the two given triangles, so that the four lines

PP', QQ', RR', SS' all pass through 0. Since P, P', S, S' all lie in one

l)lanc OPS, the lines PS, P'S' meet in a point Pi (possibly at infinity)

;

similarly QS meets Q'S' in a point Qi, and RS meets R'S' in a point Ri.

Applying the “obvious” version of the theorem to the triangles QRS,

Q' R'S'

y

which lie in distinct planes, we see that the points of intersection

Ri^RS’ R'S', Qi== SQ- S'Q', A ^ QR Q'R'

are collinear. Thus A lies on QiRil similarly B on RiP i, and C on PiQi.

Hence the three points A, B, C, lying in the plane PiQiRi as well as

in the plane PQR, must lie on the line of intersection PQR * PiQiRi-
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Girard Desargues (1593—1662) was an architect of Lyons. He dis-

covered not only the above theorem but also several others, which we
shall use later, especially in connection with conics. His treatise of

1639 was not well received during his lifetime, partly because of his

obscure style: he introduced about seventy new terms, of which only

involution has survived.

EXERCISE
By taking the corresponding vertices R and R' to be points at infinity,

deduce from 1*52 the converse of 1*51: If two triangles have 'parallel sides, the

joins of their corresponding vertices are concurreni or parallel.

1-6 An Outline of Subsequent Work. In the next chapter we shall

make a fresh start, considering real projective geometry as a self-con-

tained’ system, defined by its own peculiar axioms. We have the satis-

faction of knowing that it is consistent {i.e,, that its axioms cannot lead

to any contradictory statements) because we can obtain a “model” of

it by adding the line at infinity to the affine plane. Here we are taking

for granted the consistency of Euclidean geometry, which includes

affine geometry.

This investigation of projective geometry will be continued through-

out Chaps. 2 to 7. Then we shall derive affine geometry in Chap. 8

and Euclidean in Chap. 9. At that stage we shall have returned to our

starting point, ready to deal in a more sophisticated manner with the

difficult subject of continuity (Chap. 10). Finally, in Chaps, 11 and 12

we shall see how these synthetic geometries lead to, and can be derived

from, analytic geometry.

1*7 The Directed Angle, or Cross.* One of the concepts to which

we shall be led in Chap. 9 is that of angle: not the customary “ angle

between two rays” but an “angle between two lines which is subtly

different. From this standpoint, {AOB) means the angle through which

a variable line has to be turned, in the counterclockwise sense, in order

to pass from the position AO to the position OB. Thus (AOB) is not

altered by shifting A along AO, or B along OB, even beyond 0. Such

angles may be measured in degrees or radians, but they cannot be

negative and are always less than 180° or tt. The angles {AOB) and

{BOA) are supplementary, as we see in Fig. 1-7a. Here are some of

Euclid’s propositions expressed in terms of these directed angles

:

* Johnson (Ref. 22, pp. 12-15); Forder (Ref. 12, p. 120). Picken’s article. Euclidean

Geometry of Angle, appeared in the Proceedings of the Ijondon Mathematical Society (2),

vol. 23, pp. 45-65, 1925. See also Forder (Ref. 13) and his article. The Cross and the

Foundations of Euclidean Geometry, Mathematical Gazette, vol. 31, pp. 227-233, 1947.
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A

I. 5. // irianylr ha,*! equal sides AH and A(\ then

{AH(') = {IWA).

I. i:t. {AOH) -t- {HOA) = TT.

I. *-27. // {PAH) = {QHA), then AP is parallel to HQ,
in. 21 and 22. // A, />*, (\ D lie on a <nrele, then (ACH) = {ADH).
HI. 32. If AT is the tan (font at A to the circle AHC, then

(ACH) = (TAH).

'riiis kind of angle was invcTiled ind<‘f)<'nd<‘nl.ly by Ji. A. Johnson in

America and I). K. Picken in New Zi'aland.

HXE/tClHHS
I. Show that (A(d}) =- {H(d)) if A, H, (' are eollinear.

'i. Show tluit (AOH) - {HO.i) if O.-i and OH ar<* |><TiK*ndieular.

3. Show that (.IG.V) — {XOH} if O.X is tlu- itileriuil or extenud bisector of

tlie angle (AOH).



CHAPTER 2

INCIDENCE

The geometry considered in this book is called real because, if we
chose to work it out analytically, the coordinates would be real num-
bers, whereas otherwise they might have been complex numbers, or
the “numbers"" of a finite arithmetic (Galois field),* or something still

more bizarre. However, the present chapter deals with those properties
of the projective plane which depend only on the simple processes of
joining and intersection and which are consequently valid in the other
geometries mentioned above, as well as in real geometry. These proper-
ties include the principle of duality, perspectivity, and harmonic con-
jugacy. Many of the ideas can be traced back to Desargues (who de-
fined harmonic conjugates by dividing a segment internally and
externally in the same ratio), but their essentially projective nature
was first understood by an extraordinarily talented German, von
Staudt (1798-1867).

2*1 Primitive Concepts. In a logical development of geometry,
each definition of an entity or relation involves other entities or rela-

tions; therefore some entities and relations, the primitive concepts

y

must remain undefined. Similarly, the proof of each proposition uses
other propositions; therefore some propositions, the axioms, must re-
main unproved. In practice, the primitive concepts should have som(‘
intuitive significance, some interpretation in which the axioms are
seen to be true. Otherwise we should be playing a meaningless game.
A basis for the system of real projective geometry may be chosen in

many different ways. It seems simplest to take as primitive concepts
point, line, incidence, and separation.

There is no harm in picturing a point as the idealized limit of smaller
and smaller material dots (“position without magnitude”) and a line
as the idealized limit of a material line drawn with a sharp pencil on
smooth paper against a straight ruler. Of course, a microscope would

* Robinson (Ref. 32, pp. 87-89, 106-108).

10
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reveal imperfections in any material line, but the geometrical object

is supposed to be perfectly thin and straight and infinitely extended.

A i)oint and a line may or may not be incident. When they are, we

say that the i>oint lies on the line or that the line passes through the

point. A line passing through two points is called their join, and a

point lying on two lines is called their Intersection.

'^riie relation of separation applies to two pairs of points on a line

or to two pairs of lines through a point. If four such points (or lines)

.1, B, (\ 1) occur in that order, we say that A and C separate B and D
an<I write for brevity

ACI/BD

This relation has a less straightforward meaning in complex geometry

and no nuaning wliatev'er in finite geometries, but it does properly

A ^ B C B
2* I

A

h(‘long to real projective geometry, for it is invariant under central

projection (s<‘<‘ h^ig. 2'1 a, wlu'rc- AVj jBB and .1 ( l/B I) .) On the

otlu'r haml, the siniphu* notion of B lying “lK‘lwecu’’ A and which

Ix'longs to afline g<‘ometry, is not invariant. (Visibly, B' is not between

A' aiul In fact, the kind of order tliat belongs to real projective

g<‘onu‘lry is not serial but eyelie. We; shall return to these eoiisidcra-

lions in llu' n<‘xt <’hapl(‘r.

All hough I he a.bov<' (h'seriptioii of tlic primitive concepts helps our

imagination ami

taU<‘ <*ar(‘ lU'ver

thus sjiggesls what axioms are appropriate, vve must

lo us<‘ a.ny of these intuitive id(‘as in onr proofs. The

oidy properties to b(‘ assunuMl are lhos(^ actually staled in the axioms.

I'he t\v(» proeess<‘s of joining and int(?rs(‘eli<)U, wliieh emerge from

llu* r<‘lation of iueidcuiet*, soinewliat resemble the proc(%sscs of addition

and mult ipli<*al

i

( >11 iu alg(*bra. «ind arc' somc'tinu's demoted by the same

symbolism. W<' shall adopt liie “multiplicative” symbol a • b for the

intersc'C'lion of liiu's a and h, but the join ol |)oints .1 and B will be

denoted by the familiar symbol AB, ratluu' than the more startling
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A B. These symbols are easy to combine; e.g., the intersection of

AB and CD is AB • CD, while the join of a 6 and c d is (a • 6)(c • d).

2*2 The Axioms of Incidence.

2*21 There exist a point and a line that are not incident.

2*22 Every line is incident with at least three points.

2*23 Any two points are incident with just one line.

2*24 Any two lines are incident with at least one point.

2*26 If the three lines PP', QQf, RR' are all incident with one point,

then the three points QR • Q'R', RP * R'P', PQ • P'Q' are all incident

with one line.

Such a set of axioms (using point, line, and incidence as primitive

concepts) was given in 1899.* They are all very simple except the fifth,

which we are prepared to accept because it is the same as Desargues’

two-triangle theorem (our theorem 1*52). (It cannot be deduced from

the four simple axioms; for there exist “ non-Desarguesian ” geome-

triesf that satisfy 2-21 to 2*24 without satisfying 2-25.) We proceed to

prove its converse:

2*26 If two triangles have corresponding sides intersecting in collinear

points, then the joins of corresponding vertices are concurrent.

Proof: Using the same notation as in 1-52, we have two triangles

PQR and P'Q'R' whose corresponding sides intersect in the three col-

linear points A, B, C, and we wish to prove that the line RR' passes

through the point 0 = PP' • QQ' (see Fig. 2'2a). This is an immediate

consequence of Desargues’ two-triangle theorem itself, as applied to

the triangles AQQ' and BPP', whose joins of corresponding vertices

all pass through C, while their intersections of corresponding sides are

0, R' , R.

EXERCISES
1. Give detailed proofs of the following simple theorems, pointing out which

axioms are used:

a. Every point is incident with at least three lines.

b. Any two lines are incident with just one point.

2. The two triangles PQR and P'Q'R' of Fig. 2-2a are conveniently said to

be in perspective from the center 0 and axis ABC. If three triangles are all in

perspective from the same center, prove that the three axes are concurrent.

(Hint: Let the three axes be AiBi, AJi^, A^Bz. Apply 2-26 to triangles

A\AzAz and BiB^Bz.')

* Fieri (Ref. 28, pp. 6-22, Postulates I—XIII).

t See, e.g., Robinson (Ref. 32, pp. 126—128). Such geometries can occur only in two
dimensions. Fieri avoided the assumption of 2-25 by working in three dimensions.
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IJ. Show thut the 10 points and 10 lines of the Desargues configuration
2 ’2a or n) may be renamed Pi 2» . . . , P45 and 'pvz 2340 in such a

way that and pn are iiK-ident whenever the numbers represented by i, j, Ic, I

are all ditferent. (11 inf: Let PQIiP'Q'R' be called P 14P24P34P 15^26^35 . This
notation arises from the figure of 5 points in space with the 10 lines and 10 planes
that, join tliem. Taking the section by a plane of general position, we obtain

Pfi and pi» as sections of the line l!2 and plane 345. The five points 1, 2, 3, 4,

5 may he identified with the Pu Qu Pu P, S' of Sec. 1-5.)

4. Show that tin* same 10 points ainl 10 lines may be regarded (in six ways)
ns consisting of two [xuitagons so sit iiate<I that (consecutive sides of each pass

throngii alternat«‘ vertices of the otluT. (IIinf: Consider the pentagons

I\,Pv,PMl\uPui an<I P,:PuP,,P,J\, of Lxercise 3.)

2*3 The Principle of Duality. The principle of duality (in two
dinnuisions) asserts that I'Vi'ry definition remains significant, and every

theorem remains trins vvlicri we inl.crehangc the two pairs of concepts:

point and Line^

join and infrr.scction.

'Thus the dual of AH ('!) is (a • h)(c • d). Axiom 2-21 is H(clf-dual,

and the dual of 2-24 is part of 2-23. Some ollu'r changes of wording are

obvious cons<‘<(u<Mie(‘H of tluvse fuiida.mciita.1 changes; f.he dual of

1 -52 is 2-2(>.

'I'o ('stal)lish this |>rincipl<‘ W(c merely hav(c to ol)sorve that the

a.viom.s ini pip their onm (Innl.'t (soo S<‘e. 2-2, Kx<‘relso I). (liven a. tln'orern

and its proof, \v<‘ can inim(‘<lialcly assert the dual llunrem; for a j)r(jof

of th<‘ latter could Ik‘ wrilLui down ineehanieally by diiali/ang every

step irj th(‘ proof of tht; original theorem.

Although the closely related idea of r<‘ciprocal polyhedra had already

occurrc(l in llu‘ writings of the medieval Italian Maurolyeus (1494-1575), the

prineiph^ of duality may properly be ascribed to (lergonno (1771-1859).
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Poncelet protested that it was nothing but his method of reciprocation with
respect to a conic (polarity), and Gergonne replied that the conic is irrelevant

—duality is intrinsic in the system. Thus Gergonne came nearer to realizing

how the principle rests on the symmetrical nature of the axioms of incidence.

It is sad that such a beautiful discovery was marred by bitter controversy over
the question of priority.

Instead of using axioms that merely imply their duals, it might
perhaps be more satisfactory to use an inherently self-dual set of
axioms, such as the following:*

2*31 Two distinct are incident with at least one .

lines point.

2*32 Two distinct points cannot both he incident with two distinct lincft.

2*33 There exist two points and two lines such that each of the points
is incident with just one of the lines.

2-34 There exist two points and two lines {the points not incident with
the lines) such that the join of the points is incident with the intersection of
the lines.

2*36 Iffour points 0, P, Q, R having six distinct joins and four lines

o, p, q, r having six distinct intersections are so situated that the five joins
OPf OQy OR, PR, QR are incident with the respective intersections

q • r, r p, p ' q, q ' o, o • p, then the sixth join PQ is incident unth the
sixth intersection o • r.

EXERCISES
1. Express 2*26 in terms of lines p, q, r, 'p'

, q', r', so as to make it formally
dual to 2-25 (see Fig. 2'2b).

2. Verify that Axioms 2-21 to 2*25 imply 2-31 to 2*35, and vice versa.

2*4 Quadrangle and Quadrilateral. The following definition.s

are written in parallel columns to emphasize the principle of duality:

Four lines p, q, r, s, of which no three
are concurrent, are the sides of a complete
quadrUatercdli pqrs, of which the six ver-
tices are the points q • r, p • .v, r • j>,

q-s, p-q, r‘S. The joins of “opposite”
vertices, namely,

a = (q r)(p ' s)

b = (r- p){q • s)

c = (p • q) {'r • s)

are called diagonal lines and are the sides
of the diagonal triangle (see Fig. 2'4b).

* Axioms 2-31 to 2-34 were kindly supplied by Karl Menger. For 2-35, see Veblen
and Young (Ref. 42, p. 53, Exercise 8).

t When there is no danger of confusion, we shall omit the word complete.

Four points P, Q, R, S, of which no three

are collinear, are "the vertices of a complete
quadrangle^ PQRS, of which the six sides

are the lines QR, PS, RP, QS, PQ, RS. The
intersections of “opposite” sides, namely,

A = QR’ PS
B = RP’QS
C = PQ- RS

are called diagonal points and are the ver-
tices of the diagonal triangle (see Fig. 2*4a).
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P

2-41 7/ ABC is the diagonal triangle of a quadrangle PQRS, the
three points

Ai = BC QR, Bx = CA' RP, Ci = AB • PQ
are collinear.

Proof: Apply Desargues’ theorem (our theorem 1-52 or Axiom 2-25)
to the two triangles ABC and PQR (see Fig. 2-4c).

IB

As a corollary we have
2*42 Given the diagonal triangle and, one vertex of a. quadrangley the

remaining three vertices may be constructed, by incidences.

In fact, given the diagonal triangle ABC and vertex P, we construct,
in turn,

Bx = CA • BPy Cx = AB • CP, Ax = BC • Bx(A
R = BP- AAx Q = CP- AAi, B = AP • BQ

EXERCISES
1. Prove that the six sides of a quadrangle meet the three si<le.s of its <liagonal

triangle in the six vertices of a quadrilateral which has the same diagonal tri-
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angle. Hint: Define

A2 = BC' PS, B2= CA- QS, C2 = AB- RS

and use triangles ABC and 8RQ to prove Ai, B^, C2 collinear.

2. Dualize 2-41 and 2*42.

3. Show that the 10 points and 10 lines of the Desargues configuration

(Fig. 2-2a or b) may be regarded (in five ways) as consisting of a quadrangle

and a quadrilateral so situated that the six sides of the quadrangle pass through

the six vertices of the quadrilateral (cf. 2-35).

2*6 Harmonic Conjugacy. Although harmonic conjugates were

used by Desargues, the following construction for them seems to have

been first given by another Frenchman, La Hire (1640—1718).

Four collinear points A, B, C, D are said

to form a harmonic set if there is a quad-

rangle of which two opposite sides pass

through A and two other opposite sides

through B, while the remaining sides pass

through C and D, respectively. We say that

C and D are harmonic conjugates (of each

other) wo* A and B, and we write

H {AB, CD)

as an abbreviated statement of this rela-

tion.

To construct D, given A, B, C, we draw

any triangle PQR whose sides QR, RP, PQ
pass through A, B, C, respectively. This

determines a quadrangle PQRS, where

S = AP^BQ,

as in Fig. 2-Sa. We thus obtain

D = RS-AB

Four concurrent lines a, b, c, d are said

to form a harmonic set if there is a quad-

rilateral of which two opposite vertices

lie on a and two other opposite vertices on

b, while the remaining vertices lie on c and

d, respectively. We say that c and d are

harmonic conjugates (of each other) wo*
a and b, and we write

H(a6, cd)

as an abbreviated statement of this rela-

tion.

To construct d, given a,h,c, we draw

any triangle pqr whose vertices q r, r • -p,

p g lie on a, b, c, respectively. This deter-

mines a quadrilateral pqrs, where

= (a • p)(6 • q),

as in Fig. 2-5b. We thus obtain

d = (r • 5) (a • 6)

JR

* The preposition vx) (pronounced like “woe”) has been coined by some English

mathematicians as a convenient abbreviation for “ with respect to” or “ with regard to.”
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The construction for D ov d involves the choice of a triangle. How
do we know that a different triangle will lead to the same final result ?

This question of the uniqueness of the harmonic conjugate can be

answered affirmatively with the help of Sec. 2*2. We need only consider

the case of a harmonic set of points ; that of a harmonic set of lines will

follow by duality (because we know that the proof could be dualized

step by step).

2’61 The harmonic conjugate of C wo A and B is independent of the

choice of triangle PQR.

JS

Proof: Suppose that another such triangle P'Q'IV leads to a quad-
rangle P'Q'Ji'iS', as in Fig. 2*5c. We have to show that HS anti R'S'

both determine the same point Z) on AB. For this piir]>ose we consider,

in turn, three pairs of triangles. Corresponding sides of triangles PQR
and P'Q'R' meet in the three collinear points A, B, C\ hence, by 2*26,

the joins of corresponding vertices are concurrent, that is, RR' passes

through the point O = PP' * QQ . Applying the same theorem to tri-

angles PQS and P'Q'S', we conclude that SS' passes through this same
point 0. Thus the joins of corresponding vertices of triangles RBP and
R'S'P' all pass through O; hence, by Desargues’ theorem, their corre-

sponding sides meet in collinear points. But two of these points are

A and B; therefore the remaining sides RS an<l R'S' both meet AB in

the same point D.
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In the notation of Fig. 2-4c, we have C1C2). Thus the sides
of the diagonal triangle are “divided harmonically” by the sides of the
quadrangle. Moreover,

2*52 The sides of a quadrangle are divided harmonically by the sides

of its diagonal triangle.

Proof: The quadrangle PSBC yields AAi).

Incidentally, we observe that the quadrangle CCiBBi yields
Pi{AAu QR), which is not obviously the same as AAi).

EXERCISES
1. Using a pencil and ruler, carry out the construction for the harmonic

conjugate of C wo A and B, taking C somewhere between A and B. What
happens if C is midway between A and B'i

2. Dualize 2-51 and its proof, drawing a suitable figure.

2*6 Ranges and Pencils. The points on a line are said to form a
range, especially when we regard them as the possible positions of a

O

variable point X (which “runs along” the line). The dual of a range is

a pencil, consisting of the lines through one point : the possible positions
of a variable line x (which “rotates about” the point). The common
point of the lines is called the center of the pencil.

We proceed to define a correspondence (strictly, a one-to-one corre-
spondence) between two ranges. This is a rule for associating every
point X of the first range with every point X' of the second, so that

,
there is exactly one X' for each X and exactly one X for each X'

.

It is

usually desirable to think of the correspondence as being directed fromX to X , that is, to distinguish between this and the inverse correspond-
ence from X' to X. The two ranges need not be on distinct lines. One
trivial case, which must not be ignored, is when X' continually coin-
cides with X; this correspondence is called the identity.

There is a similar defi.nition for a correspondence between two
pencils or between a pencil and a range. The simplest correspondence
of the latter type occurs when we take the section of the pencil by a
fixed line o, so that each line x of the pencil is associated with the point
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X - o • a: of the corresponding range, as in Fig. 2-6a. The inverse corre-
spondence occurs when we project a range from a fixed point 0 so that
each point X of the range is associated with the line a: = OX of the
corresponding pencil. The existence of these simple correspondences is
one of the basic reasons for the efficacy of projective geometry.

In affine (or Euclidean) geometry, the line p (through O) parallel to o would
be exceptional: it would have no corresponding point on o. But when we
have extended the affine plane to the projective plane, the corresponding point

IS just the point at infinity on o. The line .v through O, rotating continu-
ously, determines on o the point X, which runs along to the right, say, until x
IS parallel to o, then immediately reappears far away on the left and continues
running to the right. In affine geometry the point X makes an infinite jump;
but in projective geometry its motion, through the single point at infinity, is
continuous.

2-7 Perspectivity. Apart from the identity, the simplest corre-
spondence between two ranges is that which occurs when we compare

Idg. 2-7a 2'7b

the sections of a pencil by two distinct lines o and r/, as in Fig. 2‘7a.
The relation between X on o and X' on o' is such that the line XX'
passes through a fixed point O, and we call the correspondence a per-
spectimty from O, writing

^
O

^ w -ST'. or simply A' ^ X'
Dually (Fig. 2-7b) a perspectivity from a line o occurs when the relation
between two pencils is such that the point of intersection x x' lies
on a fixed line o; then we write

X ^ x' or X x'

The following important theorem illustrates the way this notation
may be used:*

von Staudt (Ref. 40, p. 50, Sec. 110). This use of the syn.bol ^ is due to Veblen and
loung (Ref. 42, p. 57). (von Staudt used it differently.)
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2-71 It is possible, by a sequence of three perspectivities, to inter-

change pairs among any four collinear points.

Proof: Suppose we wish to interchange A with A', and B with B',

that is, to make the permutation AA'BB' —» A'AB'B or (^4^1') (^-^0-

Draw any triangle PQR whose sides QR, RP, PQ pass through A, B, B'

.

This determines two further points.

U^A'R^PQ, V^AURP
as in Fig. ^*70, and we have

R A U
AA'BB' ^ QUPB' ^ RVPB ^ A'AB'B

-P JR

2*8 The Invariance and Symmetry of the Harmonic Relation. We
proceed to show that harmonic sets remain harmonic after any number
of perspectivities. As a first step we shall prove

2*81 Any section of a harmonic set of lines is a harmonic set of

points, and, a harmonic set of points is projected from any point by a
harmonic set of lines.

Remark: This theorem is in two dual parts, and thus it will suffice

to prove the latter part: If A, B, C, D are joined to a point P (outside

their line) by lines a, b, c, d and if TL(AB, CD), then H(a6, cd).

Proof: Let P be used as a vertex of the triangle PQR in constructing

D from A, B, C, as in Fig. 2-5a or 2-8a. Then the quadrilateral ASBRQD
has two opposite vertices on AS = a, two others on BR = b, one vertex

Q on c, and one vertex D on d. Hence H(a6, cd).

As a corollary we have
2*82 Perspectivities preserve the harmonic relation:

If ABCD ^ A'B'C'D' and H(AR, CD), then C'D').
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Combining this result with 2-71, we infer that CD) implies

H(CZ), AB). But our definition for harmonic conjugacy involves A and
B symmetrically and likewise C and D. Hence

2*83 The eight relations

n{AB, CD), IL{BA, CD), ^{AB, DC), T1{BA, DC),
H(CjD, AB), TA(CD, BA), H(HC, AB), BA)

are all equivalent.

EXERCISES
1. Show that Fig. 2'8a can be made formally self-dual by interchanging the

names of c and d (so that c ~ PD and d = PC). Which lines should then be

named p, q, r, s?

2. If we have lll(AB, CD) and Il(A'B', C'D) on distinct lines, show that the

three lines AA', BB', CC' are concurrent.



CHAPTER 3

ORDER AND CONTINUITY

The order of arrangement of lines in a pencil, like that of points on
a circle, is cyclic : we cannot say of three that one is between the othe i*

two, but we can say of four that two separate the other two. Tho
correspondence between a pencil and its section enables us to carry
over this cyclic order from pencils to ranges. If A and B separate C-

and D, we write ABfJCD. (The idea of a point C lying hetioeen A and
belongs to affine geometry and may be interpreted as meaning that-

AB/fCD where D is the point at infinity on AB.)

The basic properties of separation may be stated in the form of six
axioms, as in Sec. 3-1. These are not quite sufficient for a completes

characterization of the real projective line. The final axiom, concerning
continuity, will be introduced in Sec. 3-5. This particular form has been
chosen because it is ready for immediate application in proving tho
fundamental theorem of projective geometry and other theorems ;

moreover, it is intuitively acceptable. Dedekind’s axiom has not been
used, for it is more difficult to grasp and to apply. The deduction of
our axiom from Dedekind’s was carried out by Enriques.* In Chap. lO
we shall consider a third possible approach to the theory of continuity

-

3*1 The Axioms of Order.

3.11 IfA,B, C are three distinct collinear points., there is at least on a*

point D such that ABJ/CD.
3*12 7/ ABJ/CD, then A, B, C, D are distinct.

3-13 If AB//CD, then AB//DC.
3*14 If A, B, C, D are four distinct collinear points, at least one o/*

the three relations BC//AD, CA//BD, AB//CD must hold.

3*16 If AB//CD and AC//BE, then A B//DE.
3*16 If AB//CD and ABCD ^ A'B'C'D', then A'B'//C'D'.

The first five of these six axioms have been adapted from thoso
given by Vailati. They express obvious properties of points arranged

* Enriques (Ref, 11, pp. 71-75). Cf. Sec. 10-6.

22
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round a circle. Accordingly, we often find it convenient to use a circular

diagram when dealing with points on a single line; e.g.y Fig. 3-1a illus-

trates 3-15. (This does not mean that we imagine the line to be some-
how “bent,” but it emphasizes the important fact that the line is

“closed.”)

In contrast to these five one-dimensional axioms, 3*16 is essentially

two-dimensional, relating order on one line to order on another. It

enables us to derive the dual statements concerning the relation

ahj/cd for concurrent lines.

Fig. S’Ia Fig. 3"1b

Using 2*71 to interchange the pairs (A(J)(BD), we deduce from 3*16

that

ABUCD implies CD/jAB

Taking this with 3-13, we conclude that the eight relations

ABUCD, BA//CD, ABUDC, BA/lDC
CDHAB, CD!IBA, DCI/AB, DC!IBA

are all equivalent (cf. 2-83).

By 3*12, the D and E of 3*15 eannot coincide. Thus the relation

AB!ICD excludes AC!IBD. But these are equivalent to two of the

relations in 3*14, and we can argue similarly for any other two. Hence

3*17 The three relations BC!!AD, CA!IBD, AB!ICD are mutually

exclusive: no Uoo can hold simultaneously.

The following theorem has a somewhat similar appearance:

3*18 The three relations BCUDE, CA!IDE, AB!IDE cannot all

hold simnltaneo'ushj.

Proof: Assuming all three, we shall find that each of the relations

in 3-14 leads to a contradiction. Suppose, for instance, that BC!!AD
(or AD!IBC), as in Fig. 3*1 b. Then by 3-15 the relations AB!IDE and

ADUBC imply ABUEC, while AC!IDE and ADh'CB imply ACHEB
(or OAIIBE). But the conclusions CAIIBE and AB!ICE are incom-
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patible, by 3-17. Since A, B, C enter the discussion symmetrically, the

proof is complete.

This tricky proof of an obvious statement indicates the economy of our

axioms: they are only just strong enough to provide the familiar properties of

cyclic order.

EXERCISE
Prove that AB//CD and AC//BE imply BE//CD. {Hhit: BE//AC and

BA//ED.)

3*2 Segment and Interval. If A, JB, C are three collinear points,

we define the segment AB/C’^ as consisting of all points X for which

AB//CX. (Thus the segment AB/C does not contain C. The familiar

“segment AB** of aiOdne geometry may be described as AB/C with C

at infinity.) The segment plus its end points A and B is called an

interval and written AB/C. If X and. Y belong to AB/C^ the interval

XY/C is said to be interior to AB/C (even if X or F coincides with

.4 or jB), and a point D lies between X and Y in AB/C if it belongs to

XY/Cy that is, if XY//CD. Thus the notion of intermediacy (or three-

point order) is valid for an interval, although not for the whole line.

In a circular diagram such as Fig. 3Ta an interval naturally appears

as an arc.

By drawing several diagrams like Fig. 2'5a the reader will easily

convince himself that the harmonic conjugate of C wo A an<l B lies

in the segment AB/C. But to prove this rigorously is not so easy. The
following proof is due to Enriques :t

3*21 If Ay By C are all distincty H(4.B, CD) implies AB//CD.
Proof: By 3T1 we can take a point M such that AS//PM , as in

Fig. 3-2a. Let QM meet AB in F, and RS in 0. Let PO meet AB in A"”,

and AR in N. If F happens to coincide with Z), we immediately obtain

AB//CD by perspectivity from Q. If not, we haveOP Q O
ASPM ^ ARNQ ^ ABXCy ASPM ^ ABCYy ASPM ^ ADXY
Hence by 3-16 we have AB//XCy AB//CYy AD//XY. Thus both X
and F are in the segment AB/Cy and D is successfully trapped between

them.t

* Read as **AB without C.”

t Ref. 11, p. 51.

t The details involved in this “trapping” are as follows: By 3-18 the relations AB/fXC
andAlB//CF exclude .4J5//XF; thus,by 3-14, we must have eitherAYZ/RF orAF//BX.
We may assume the former possibility (as the latter can be treated by the consistent
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3*22 Corollary: If C are all distinct, 1A{AB, CD) implies
D 9^ C.

In other words, the diagonal points of a quadrangle are not collinear.

(Consider the quadrangle ABPQ,) This result, which we tacitly assumed
in Sec. 2-5, is sometimes taken as an axiom.*

3*3 Sense. In ordinary (affine) geometry a point decomposes a
line through it into two rays; but in projective geometry a point does
not divide a line at all. (We can reach the left side of the barrier point

AT

from the right by proceeding to the right and passing through the point
at infinity.) The circular diagram suggests that two points will decom-
pose their joining line into just two segments (represented by two semi-
circles, say); but this is quite difficult to prove, as we shall see.

3-31 If AB//CD, the two points A and B decompose their line into

just two segments: AB/C and AB/D,
Proof: No point A" can He in both AB/C and AB/D; for then wc

should have XC//AB, CD//AB, DX//AB, which are incompatible
(by 8T8). It remains to be shown that any point X, other than A or ./?,

must lie in one of the segments. f We shall assume that A”^ does not lie

in AB/C and deduce that it then lies in AB/D. By 3T4 (with A’^ for D)
either BC//AX or CA//BX. In the former case we have BA//CD

interchange of X and Y). By 315 the relations XA//Yli and XY//AI) imply XA//IiD-,
finally, Alt/IXC and AXl/Iil) imply AltlfCD.

* Veblen and Young (Ref. 42, p. 45).

t This part of the proof is due to Rohin.son (Ref, 32, p. 120).
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and BC//AX

i

implyingBA/

/

DX ; in the latter, AB//CD and AC//BX
implying AB/JDX. Thus in either caseX belongs to AB/D, as required!

Two such segments, and likewise the corresponding intervals A^/C
and AB/Dy are said to be supplementary.

Axiom 3T4 and Theorem 3T7 imply that three collinear points
Ay By C decompose their line into three segments BG/Ay CA/B, AB/C;
and it can be proved by induction that n collinear points decompose
their line into n segments.* Thus the line contains infinitely many
points.

In this manner the notion of the cyclic order of any number of points
may be rigorously justified, but it would be tedious to give all the
logical details here. Enough has been said to show the reader that he
can henceforth safely rely on intuition, in the certainty that he could,
if he wished, supply the proofs.

One consequence of this notion of cyclic order is the distinction of
sense.-\ If D, E, F are three distinct points on the line ABCy we can say
whether the sense DEF agrees or disagrees with the sense ABC, writ-
ing, respectively,

^{ABC) = ^{DEF) or ^{ABC) 9̂ ^{DRF)
Any of D, E, F may coincide with any of A, B, C. In particular,

^{ABC) = ^{BCA) = ^{CAB) ^ ^{CBA)

Instead of deriving sense from separation, Veblen considered “un-
defined elements called senses,** in terms of which he defined separa-
tion. In the present treatment his definition becomes a theorem:

3*32 The relation AB//CD is equivalent to ^{ABC) 9̂ ^{ABD).

For brevity, the formal proof is omitted. f In Fig. 2*5a the sense
^{ABQ is “left to right,** while S(^FZ)) or is “right to left.’*
In Fig. 3Ta, ^{ABC) is “positive,” or “counterclockwise,** while
S(ABD) is * negative,” or “clockwise.**

The following theorem is not needed for the subsequent development,
but is interesting because, after its enunciation by Sylvester in 1893 it
remained unproved for about forty years. Then T. Grunwald proved
It by an ingenious argument using parallel lines. The projective proof
given here is due to R. Steinberg. J

* Veblen and Young (Ref. 43, p. 46).

t Coxeter (Ref. 6, p. 32). Cf. Veblen and Young (Ref. 43, p. 32).
t American Mathematical Monthly, vol. 51, pp. 169-171, 1944; vol.

1948; Mathematical Reviews, voL 9, p. 458, 1948.
55, pp. 26^28, 247,
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3*33 Let n given 'points have the property that the line joining any
two of them passes through a third point of the set. Then the n points are all

collinear.

Proof: We shall suppose three of the n points to form a triangle

PQR and shall show that this leads to a contradiction. Let ^ be a line

through P that contains no other point of the set. All the joins of pairs

of the n points meet p in a certain set of at least two points : P itself,

one on QR^ and possibly others. These points occur in a certain cyclic

order. Let A be consecutive to P in this order, so that one of the seg-

ments AP is not met by any of the joins. This point A is not one of the

n but lies on a line containing at least three of them, say J5, C, D, so

named that AB//CD. Since P and B are two of the n points, their

O
join must contain a third, say 0. Suppose ABCD ^ APC'D'

.

Then
AP//C'D'; that is, the joins OC and OD each meets one of the two
segments AP, contrary to our definition of A. Hence in fact no three

of the n points can form a triangle, but all must be collinear.

EXERCISES
1. Assuming AB//CD, name the four segments into which A, B, C, D

decompose the line.

2. Show that tlic relation S(A

7

j*Z>) = S(/7C/)) implies S(.d/i/>) = S(A(7P).

3. Given n points, not all collinear, prove that by joining every two of theno

we obtain at least ii. distinct lines. (L. Erdos.)

3*4 Ordered Correspondence. We have already described the

concept of a correspondence between two ranges, illustrating it by the

particular correspondence called pcrs])cctivity, which (by Axiom 3*16)

preserves the relation of se])aration and consequently cyclic order and

the distinction of sense. But this property of a pcrspcctivity is shared

by many other kinds of correspondence. Let us use the name ordered

correspondence whenever the relation of separation is j^rcserved. I'hat

is to say, the characteristic property of an ordered correspondence

X —^X' is that, if the relation AB//CD holds for four positions A.

B, C, D of A”, tlieii the relation A'B'//C'
D' holds for the corresponding

positions of X'

.

It follows that segments correspond to segments, and

intervals to intervals.

Any point ilf that coincides with its corresponding point il/' is called

an invariant point. (Some authors jjrefer to call it a double point.)

For instance, a perspcctivi ty between two rojiges has just one invariant

point, where the two lines intersect. Of course, there are some ordered

correspondences that have no invariant points. On the other hand.
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there may be more than one invariant point, but in such a case it is

obvious that both ranges must be on the same line.

Any ordered correspondence preserves the distinction of sense, i.e.^

the relation S{ABC) = S(DEF) implies S(A'B'C') = SiD'E'F'); but

in the case of a correspondence between superposed ranges (on one

line) the question arises as to whether the sense ABC agrees or disagrees

with the sense A'B'C'. We call such a correspondence direct or opposite

according as

S(ABC) = S(A'B'C') or SiABC) S^A'B'C')

Whichever relation holds for one triad of points must still hold for

any other, in view of the above remark about S(ABC) and S(DEF).
In particular, the identity (namely, X —> X) is direct.

JR

A particularly important kind of opposite correspondence is described

in the following theorem

:

3*41 The correspondence between the points of a range and. their

harmonic conjugates wo two fixed points M and N is an opposite corre-

spondence with invariant points M and N.

Proof: Since a perspectivity preserves order, so does the resultant

or product of any sequence of perspectivities. To prove that the corre-

spondence between harmonic conjugates wo M and N is ordered, wc
exhibit it as the product of three perspectivities with centers Q, /f ,

in the notation of Fig. 3*4a. Here Q and R are any fixed points collineur

with M. A variable point X on the line MN determines

P = NR qx, S = MP • NQ, X' = MN • RS
and we have

Q M R
MNX ^ RNP ^ QNS ^ MNX'

Thus the correspondence X ^ X' is ordered and has M and N as
invariant points. Finally, it is opposite, since
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S(ifA^Z) SiMNX')

by 3*21 and 3*32.

This enables us to prove the following:

3*42 Two pairs of harmonic conjugates wo M and N cannot separate

each other.

Proof: Suppose that AB) and CJD). Then A, B, C
are three positions of X in the above correspondence, and the respec-

tive positions of X^ are B, A, D. Since the correspondence is opposite,

we have ^{ABC) 9̂ ^{BAD), that is, S{ABC) = ^{ABD). By 3*32

this means that A and B do not separate C and D.

In proving 3*41 we exhibited the correspondence X —^ X', where

A'A”'), as the product of three perspectivities (see Fig. 3*4a).

By naming one further point 0 — MQ * SX we can reduce the number

of perspectivities to two. For since H(AfQ, 0R\ 0 is a fourth .fixed

point on the line AIQH, and we have !

0 R
MNX QNS ^ MNX'

Interchanging N and A", as in Fig. 3-4b, we obtain a new correspond-

ence X X\ where now NX'):

3*43 When H(l/X, NX')^ where M and N are fixed, X X' is a

direct correspondefice tvith invariant points M and N.

Proof: Using three fixed points O, Q, R (outside the line MN) such

that Tl(MQ, OR), we observe that QX meets RX' in a point S on ON,
and

Q R
MNX X ONS w MNX'

In this case S(MA^X) = S(J1/A^X'); for otherwise we should have

MN/IXX', whereas the relation Ti{MX, NX') implies MXUNX'.
Thus the correspondence is direct.
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In ordinary analytic geometry a point on the x axis is located by means of
an abscissa x, which measures its distance to the right of the origin (so that
points to the left of the origin have negative abscissas). A correspondence
X X' on this axis is represented by a correspondence of abscissas:

X —> x' = f(x)

where /(a:) is a single-valued function such that, for any given x', the equation
f(x) = x' has a unique solution. Since we are considering the 'projective line,

we must include m (= — oo)asa possible value for x or x'. If x and x' become
infinite together, the point at infinity is invariant; if not, there will be a finite
x' =/(<») and a finite x for which f(x) = oo . In the special case when f(x)
is X itself, the correspondence is the identity. If M and N have abscissas 0 and
00

, the correspondences considered in 3*41 and 3*43 are, respectively, x' == —x
and x' = ^x. Our axioms have been chosen so as to enable us to develop the
same theory without having recourse to analysis.

EXERCISES
1. Show that the correspondence is ordered if x' is a differentiable

function whose derivative dx'/dx never changes sign. It is direct if dx'/dx > 0
almost everywhere (i.e,, except where x^ is infinite, and possibly at some iso-
lated places where the derivative may vanish) and opposite if dx'/dx < 0
almost everywhere. Hint: Compare tlie signs of (a' — b')/(a - b) and
Q>' ~ c')/(.b — c), using the mean-value theorem.

2. Assuming the function x' = f(x) to be continuous (except where it
becomes infinite), show that the graph y = f{x) is eitlier all in one piece
with no asymptote or in two pieces with two asymptotes, one horizontal
and one vertical. Which points on the graph represent invariant points of the
correspondence?

3. Show that x —> a-® is a direct correspondence with four invariant points
(where a; = —1, 0, 1, to).

3*5 Continuity. To get a picture of what is happening in an
ordered correspondence X X' on one line, think of a circular race
track that two runners agree to run all round, starting at the same
time and finishing at the same time, never stopping or turning back
but otherwise free to go as fast or slow as they please. Then X and X'
are the respective positions of the two runners at any instant. The
correspondence is direct or opposite according as the runners are going
in the same direction or in opposite directions. An invariant point
occurs where th,e runners meet or where one overtakes the other. In
the direct case this may happen any number of times, even infinitely
often, for the runners might remain side by side for awhile (or even for
the whole journey, when the correspondence is the identity). Thus
there may be any number of invariant points, from none at all to in-
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finitely many. But in the opposite case a little thought reveals that

the runners will meet exactly twice before each returns to his own start-

ing point (or if they started from the same
point, they will meet once more elsewhere).

This means that every opposite correspond-

ence should have exactly two invariant points;

but we cannot prove this rigorously without

introducing one further assumption, such as the

following

:

3*61 Axiom of Continuity. If an ordered

correspondence relates an interval* ABfC to an

interior interval A'B'1C, then the latter contains an

invariant point M such that there is no invariant point between A and M
{inAB/C).

This is obvious when we think of the race-track: X runs from A to B while

X' runs over part of the same ground from A^ to B'l M is the first point where
they meet.

If the correspondence is opposite, the last clause of the axiom (after

“point i/”) is superfluous: M is the only invariant point in ABIC,
For, two invariant points (such as the M and N of Fig. 3*5a) would
determine a segment whose sense is preserved.

3*6 Invariant Points. We are now ready to prove the following:

3*61 Every opposite correspondence has exactly two invariant points.

Proof: Since the identity is direct, any opposite correspondence

admits a point A that is not invariant. Suppose the correspondence

relates A to A' and A' to A". Choose a point C such that AA'//A"C
(or, if A” coincides with A, take any new point C). Then the given

opposite correspondence relates AA'jC to the interior interval A'A"/C,

* We use the interval, rather than the segment AB/C, to cover the possibility of B'

coinciding with B, in which case M naight also coincide with B.
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as in Fig. 3*6a. Hence there is just one invariant point M in AA'1C.
Similarly, there is a second invariant point iV in the supplementary
segmentAA*I

M

; forthe inverse correspondence (namelyX' —»X) relates

A'A’'jM to the interior interval AA'/M.

We saw, in 3-42, that the relations 'G.{MN, AB) and H(il/A', CD)
preclude AB//CD. This theorem has an important converse

:

3*62 If AB arid CD are two pairs of points that are collinear hut do
not separate eaeh othery then there exist points M and N such that

B.{AB, MN) and MN).

Proof: Any point X has a harmonic conjugate X^ wo A and B and
a harmonic conjugate X"^ wo C and D: in symbols,

niABy XX^) and H(CZ>, XX-^).

While X runs from ^ to J? over the interval 'AB/Cy X^ runs from A to

B over the supplementary interval AB/C^y which includes D as well

as Cy since the pairs AB and CD do not separate each other (see

Fig. 3*6b). Meanwhile, X^ runs from A^ to B'f over part of the same
interval. Now consider the combined correspondence X^ —» X-f. This
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relates the interval AB/C^ to the interior interval By Axiom
3*51 the latter interval contains an invariant point M, which can

equally well be called or since it is the harmonic conjugate of

some point N wo either of the pairs AB, CD (see Fig. 3 ‘6c).

The theorem we have just proved is especially significant since it would

enable us to define separation in terms of incidence, instead of taking separa-

tion to be a second undefined relation. In fact, we could define AB//CD to

mean that there is no common pair of harmonic conjugates wo the two pairs

AB and CD. Then we could prove 3-12, 3-13, and 3-16 as theorems, leaving

only three axioms of order. This idea is due to Pieri, whose exposition was

praised by Russell* in the following words: “This is, in my opinion, the best

work on the present subject.” Actually, instead of AB/C, Pieri defined the

supplementary segment (ACB), containing C; and he took 3-22 as an axiom.

His definitiont may be expressed thus:

{ACB) is the locus of the harmonic conjugate of C wo a variable j>air of distinct

points that are harmoriic conjugates wo A and B.

Adding to the segment its end points A and B, we obtain an interval, say

(ACB); and the relation AB//CD means that D does not belong to this inter-

val. Thus Pieri reduced the undefined relations to incidence alone and reduced

the axioms of order to the following three:

(1) IfD, on AB, does not belong to (ACB), it belongs to (ABC).

(2) If D belongs to both (ABC) and (BAC), it cannot belong to (ACB).

(3) If D belongs to (ACB) and E to (ADB), then E belongs to (ACB).

On tlie other hand, this simplification is to some extent illusory, as these

axioms would he quite complicated if we expre.ssed them directly in terms of

incidence. Now, whicli is preferable: a number of simple axioms involving two

undefined relations, or fewer but far more complicated axioms involving only

one such relation? The answer is a matter of taste.

EXERCISES

1. Prove that if D belongs to (ACB), (ACB) = (ADB).

Hint: By Pieri’s definition of a segment, C belongs to (ADB). By (3), every

point of (ADB) belong.s to (ACB). By the same axiom with C and D inter-

changed, every point of (ACB) belongs to (ADB).

2. Deduce 3-11, 3-14, and 3-15 from Picri’s axioms.

Hint: If 311 were not true, (ICTi) would cover the whole line. Similarly, so

woTild (ABC) and (BAV). Any fourth i)oint D would belong to all three of

the segments (ACB), (ABC), (BAC), contradicting (2). As for 3-14, this is a

simple re,statement of (2). To prove 3‘15 we may argue as follows:} Since

* Ref. 36, p. 382.

t Ref. 28, p. 24.

}This solution i.s duo to R. (1. K. Epple, a graduate student at the University of

Southern California.
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AB//CD and ACf/BE^ D does not belong to {ACB)t nor E to (ABC). Hence,

by (1), E belongs to {ACB) while D does not. Interchanging D and E in (3), we
conclude that D cannot belong to {AEB), nor even to (^AEB). Hence AB//DE.

3*7 Order iif a Pencil. If a, 6, c, d are four concurrent lines meet-

ing another line in points A^ J5, C, D such that AB//CD^ then we say

ah//cd

By Axiom 3-16 this definition for separation of line pairs is independent

of the chosen section ABCD. We can easily dualize all the results of

the present chapter; e.g.^ the dual of a segment is an angle. If a, b, c

are three lines through a point 0, we can distinguish the two senses of

rotation about 0 as S(a6c) and S(cba). We can define an ordered

correspondence between two pencils. If the pencils have the same center.

the correspondence may be direct or opposite. By 3-61 every opposite
correspondence between pencils has exactly two invariant lines.

3*8 The Four Regions Determined by a Triangle. We saw, in

3-31, that two points decompose their line into just two segments.
Dually, two lines decompose the pencil to which they belong into two
angles; or we may say that they decompose the whole plane into two
angular regions. (“Vertically opposite” angles belong to the same re-

gion, since the line at infinity forms no barrier between them.) A third
line, not concurrent with the first two, penetrates both regions. Hence:

3*81 Three lines that form a triangle decompose the whole plane into

four regions."^

A fourth line, not through a vertex of the triangle, is decomposed by
the three lines into three segments, one in each of some three of the

* For a more extended account (though without the notation ABC/p) see Vel)len and
Young (Ref. 43, p. 53).
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four regions. Hence there is just one of the four regions that the new-

line fails to penetrate. This suggests a notation for distinguishing the
four regions formed by lines BC, CA, AB: the region not penetrated
by a line p is denoted by

ABC/p

(In Fig. 3 '8a, this is region III.)

EXERCISES
1. Observe that the interior of the ordinary triangle ABC of affine geometry

may be described as ABC/o, where o is the line at infinity.

2. In Euclidean geometry, three lines forming a triangle are tangents to

four circles (inscribed and escribed), one in each of the four regions.

3. In ordinary analytic geometry the coordinate axes OX, OY and the line

at infinity may be regarded as forming a triangle that decomposes the plane
into the four quadrants. Show that each of these may be denoted by OXY/p,
where p is one of the four lines

+x i ?/ + 1 = 0

4. Show tliat four lines of general position (forming a complete quadri-

lateral) decompose the plane into seven regions: four triangular (bounded by
three segments) and tlirce quadrangular (bounded by four segments).



CHAPTER 4

ONE-DIMENSIONAL PROJECTIVITIES

The present chapter is concerned with the most important kind of

ordered correspondence: the projectivity, which may be defined

either as the product of several perspectivities or as a correspondence

that preserves harmonic sets. The first definition, due to Poncelet, has

been adopted by Veblen, Baker, and other authors; it has the advantage
of remaining valid in complex geometry. But this book follows Enriques
in using the second definition, due to von Staudt, which generalizes

more readily to two (or more) dimensions. It is an immediate conse-

quence of 2-82 that every Poncelet projectivity is a von Staudt
projectivity, and we shall prove in Sec. 4-2 that every von Staudt pro-

jectivity (in real geometry) is a Poncelet projectivity. Thus from
that point on the two treatments coincide.

4*1 Projectivity. The notion of correspondence extends easily

from the line to the plane. By a two-dimensional correspondence
X-^X' we mean a rule for associating every point X with every
point X' so that there is exactly one X' for each X and exactly one X for

each X'. A correspondence between lines, x x', is defined similarly.*

A collineation is the special case where collinear points corresj^ond to

collinear points, and consequently concurrent lines to concurrent lines;

i.e., ranges correspond to ranges, and pencils to pencils. Thus a col-

lineation preserves incidences: point X' lies on line x' if and only if

point X lies on line x. The range of points X on a given line x corre-

sponds to a range of points X' on the corresponding line x'

.

Four posi-

tions of X forming a harmonic set correspond to four positions of X'
forming a harmonic set; for any quadrangle used in constructing the
first set corresponds to a quadrangle having the same relation to the
second set. This suggests the following one-dimensional analogue:

* If we had not restricted our geometry to two dimensions (by means of Axiom 2 -24),

we could just as easily have defined a correspondence between the points (or lines) of
two distinct planes.

36
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A projectivity between two ranges is a correspondence that preserves
the harmonic relation. In other words, if the relation CD)
holds for four positions A, B, C, D of X, then the relation ll(A'B'y C'D')
holds for the corresponding positions of X'. The established notation,
invented by von Staudt,* is

XxX'
Thus the relations ABCD ^ A'B'C'D' and H(^5, CD) imply
HiA'B'y CD').

By 2-82 the perspectivity X ^ X' is a special case of the projectivity
X -A X'. We may now write 2-71 in the concise form

ABCD - BADC ^ CDAB ^ DCBA
(for any four collinear points).

We also define a projectivity x x' between the lines of two pencils

:

if H(a&, cd) holds for four positions a, 6, Cydotx in the first pencil, then
H(a'fe', c'd') holds for the corresponding four positions of x' in the
second.

The following theorem will enable us to apply to projectivities some
of the results already obtained for ordered correspondences (e.g.y 3-61)

:

4-11 Every projectivity is an ordered correpondence. In other words, if

ABCD ^ A'B'CD' and ABlJCDy then A'B'UC'D'.

Proof: Suppose, if possible, that ABCD x A'B'C'D' and ABJ/CD
but not A'B'//C'D'. Then by 3*62 there exist points M' and N' such
that UiA'B'y M'N') and M'N'). These two points of the second
range correspond to points M and N of the first, such that MN)
and 1\{CD, MN). ]{y 2-83 this means that B.{MN, AB) and
HiMN , CD). But we have assumed AB//CD; thus 3-42 is contradicted.

The next theorem shows a radical departure from the general ordered
correspondence (which, if direct, may have any number of invariant
points)

:

4*12^ A projectivity having more than t'wo invariant points can only
be the identity.

^

Proof: We shall obtain a contradiction by supposing that a given
projectivity has three invariant points A, B, C and a noninvariant
point P, so that ABCP - ABCP' with P ^ P'. Let the points A, By C
be named in such an order that P lies in the segment AB/C and P'
in PB/C (see Pig. 4Ta). The projectivity relates the interval (7 to

* Ref. 40, p. 49.

t von Staudt (Ref. 40, p. .50, §!()«).
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the interior interval P'B/C. Hence by Axiom 3-51 the latter interval

contains a “first” invariant point M (admitting no invariant points

between P and M). Similarly the inverse projectivity {X' — X)

relates AP'/C to AP/C, which consequently contains a “last” invari-

ant point N (admitting no invariant points between N and P') . Since

the segments NP'/C and PM/C overlap, we can assert that the seg-

ment NM/C is entirely free from invariant points.

Let P be the harmonic conjugate of C wo M and N, and suppose

D -x D'. Since MNCD x MNCD\ the relation 1A{MN, CD) implies

M-iMN, CD'). Hence, by 2-51, D = D\ and D is an invariant point in

the forbidden segment MN/C^ which is absurd. Thus there cannot

really be three invariant points (unless every point is invariant).

4*2 The Fundamental Theorem of Projective Geometry. The
following theorem derives its name from the fact that it opens the

way to the most characteristic developments of our subject. Its

strength will be seen in the ease with which the remaining theorems

of this chapter can be proved. Moreover, it enables us to construct

any given projectivity as a product of perspectivities, thus reconciling

the treatments of Poncelet and von Staudt.

4*21 The Fundamental Theorem : A 'projectivity is determined when

three points of one range and the corresponding three points of the other

are given.*

Proof: Suppose we are given three points A, P, C of one range and
corresponding points A', B', C' of the other. We wish to construct a

projectivity X — X' such that ABC — A'B'C' and to establish its

uniqueness.

If the two ranges are on distinct lines, as in Fig. 4-2a, one simple

construction is obtained by letting R, 8, Co denote the points where

* von Staudt (Ref. 40, p. 52, §110).
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the respective lines AA'» BB', BA' meet CC'. Then any point X on AB
determines X' on A'B' by means of the two perspectivities

ABCX ^ A'BCoXo i A'B'C'X'

If the two ranges are on one line, we use a quite arbitrary perspec-

tivity ABC ^ AiBxC\ to obtain a range on another line and then relate

AiBiCi to A'B'C' by the above construction.

S

Fig. 4-2b

To establish the uniqueness of this projectivity, we have tq prove

that a different construction {e.g., by joining AB' instead of BA')

would yield the same A”' for a given X. Suppose one construction gives

while another gives

ABCX - A'B'C'X'

ABCX 7^ A'B'C'X'i

Then by combining the two constructions we obtain

A'B'C'X' - A'B'C'X'i

This combined projectivity has three invariant points A', J5', C';

hence, by 4T2, X'l must coincide with X'.

4*22 Corollary: An^ projectivity can be constructed as a product of

perspectivities, the number of which can be reduced to three. If the two

ranges are on distinct lines, two perspectivities suffice. *

In one important case a single perspectivity suffices:

4’23 If a projectivity between ranges on two distinct lines has an

invariant point, it is merely a perspectivity.^

* For the direct deduction of this theorem from Poncelet’s definition of a projectivity,

see Robinson (Ref. 32, pp. 28-31) or Hodge and Pe<loe (Ref. 20, pp. 218-224).

t von Staudt (Ref. 40, p. 51, §108).
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Proof: Of course, the invariant point 0 belongs to both ranges ; tlius

it must be the point of intersection of the two lines, as in Pig. 4 -Sb.

Let B and C be any other points of the first range, B' and O' the corre-

sponding points of the second. Then we have OBC x OB'C

.

But

S

OBC X OB'C' where S = BB' • CC'

By the fundamental theorem this perspectivity is the same as tlie

given projectivity 1 the join of two corresponding points always passes

through this same point S,

EXERCISE
If the sides of a variable triangle pass through three fixed collinear points,

while two vertices run along fixed lines, prove that the third vertex will run
along a third fixed line concurrent with the other two. (This is Pappus’s
porism, which was the inspiration for much of Maclaurin’s work on loci, begin-

ning in 1722.)

Hint: Either use the dual of 4-23 or apply 2-26 to two positions of the
variable triangle.

A'

Fig. 4-3b

4*3 Pappus’s Theorem. The theorem we are about to prove is

especially significant because in some treatments it is taken as an.

axiom, instead of 3-51. The resulting geometry is more general, as it

can be developed without any appeal to continuity.

4*31 Pappus’s Theorem: If alternate vertices of a hexagon lie on.

two linesy the three 'pairs of opposite sides meet in three collinear points.

Proof:* Let AB'CA'BC' be the hexagon, so that the points to be
proved collinear are

L = BC' • CB'y M = CA' AC'y N = AB' • BA'

as in Fig. 4*3a. Using further points

J = AC' ’ BA'y K = BC' CA'y 0 = AB - A'B'

* O’Hara and Ward (Ref. 26, p. 53).
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we have

pappus’s theorem 41

A C
A'NJB X A'B'C'O ^ KLC'B

Thus B is an invariant point of the projectivity A'NJ KLC', By
M

4-23 this is a perspectivity, namely, A'NJ ^ KLC' (since the joins
A'K and JC' pass through M). Hence NL passes through M.

Pappus’s theorem suggests a more symmetrical construction
(Fig. 4*3c) to replace Fig. 4*2a. Given four points ^1, B, (7, X on one
line and three points A’, B', C' on another, we can locate X' such that

A'

ABCX — A'B'C'X' as the point A'B' • AF, where F is XA' • o, and o
is the “Pappus line”

{CA' • AC'){AB' • BA')

sometimes called the axis of the projectivity. To see this, let 0 be the
point where AA' meets the axis o. Then

A' A
ABCX ^ GNMF ^ A'B'C'X'

It is remarkable that Pappus’s theorem, when used as an axiom, can
take the place of Axiom 2*25. In fact, Desargues' theorem can he dediieed

from 2-21 to 2-24 and 4-31. The following is a simplified version of

Hessenberg’s proof:*

Using the notation of Fig. l*5n or the frontispiece, name the four
extra points

S PR- Q'R', T = PQ' RR', U = PQ - OS, P = P'Q' - OS

* Pasch and Dehn (Ref. 27, p. 227); Baker (Ref. S, pp. 25-2«); Hoilge and Pedoe
(Ref. 20, p. 272).
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Then the Pappus hexagon QROSQ'P makes A, T, U collinear,

P'R'OSPQ' makes V collinear,

and Q'SPUTV makes At By C collinear.

EXERCISES
1. Show that Pappus’s theorem is its own dual (see Fig. 4-3b).

2. Let the points A, B, C, A'y B\ C', L, M, N of Fig. 4-3a be renamed Au
Bi, Cl, Ai, Bz, C2, Az, Bz, Cz‘ Observe that Ai, B,-, Ck are collinear whenever

i + J •+ A: is a multiple of 3.*

3. Given a triangle ^1.42.43 and two points Bi, Bz, locate a point Bz such

that the lines AiBi, AzBz, AzBs are concurrent, while also .4iJ?3. -42-62, 43F1

are concurrent. Prove that then the lines A 1B 2, AzBi, AzBz are concurrent.

(In other words, if two triangles are doubly perspective, they are triply

perspective.) f

4. Show that the Pappus configuration of nine points and nine lines may
be regarded (in six ways) as consisting of a cycle of three triangles, such that

the three sides of each pass through the three vertices of the next.^I Hint: Let

one of the triangles be ABN (or 4 ijBiC3).

5. Let the axis of ABC x A'B'C' (Fig. 4-3c) meet AB in Q and A^B' in O'.

Show that ABCOQ - A'B'C'0'0.

4*4 Classification of Projectivities. A projectivity on one line

may be either direct (sense-preserving) or opposite (sense-reversing).

The identity is, of course, direct; by 4T2, no other projectivity can
have more than two invariant points.

A projectivity having no invariant point is said to be elliptic.

A projectivity having one invariant point is said to be parabolic.

A projectivity having two invariant points is said to be hyperbolic.

(These names will be justified when we come to consider affine

geometry, where the various kinds of conic have 0, 1, or 2 points at

infinity.)

By 3*61, every opposite projectivity is hyperbolic; therefore every
elliptic or parabolic projectivity is direct. Thus the two methods of

classification are related as in the following:

Table of Projectivities on One Line

Direct Opposite

The identity

f 00 )

Elliptic

(0)

Parabolic

(1)

Hyperbolic

(2)

(The numbers of invariant points are given in parentheses.)

* Levi (Ref. 24, p. 108).

t Veblen and Young (Ref. 42, p. 100).

t Hessenberg (Ref. 18, p. 69).
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This shows that, apart from the identity, there are four possible

kinds of projectivity (for superposed ranges) : elliptic, parabolic, direct

hyperbolic, and opposite. We proceed to prove that all four kinds

actually exist.

Special hyperbolic projectivities of the two kinds have already ap-

peared in 3-43 and 3-41,

An instance of an elliptic projectivity is afforded by

ABC ^ BCA

where A, By C are any three collinear points. These points themselves
are obviously not invariant, and each of the three segments BCJA,
CA/By ABIC is related to another one; hence there is no place for an

invariant point anywhere. The actual construction for an elliptic

. projectivity requires the full allowance of three perspectivities. For if a
projectivity X — X' on one line is the product of two perspectivities

there must be an invariant point where the line of X’s meets the line

of X^s. Conversely,

4*41 Every parabolic or hyperbolic projectivity {with a given invariant

poinC) can he constructed as the product of two perspectivities.

Proof: By the fundamental theorem 4-21, a projectivity having an
invariant point M is uniquely determined by the relation

MAB - MA’B'

Choose any two points Aq and Bq collinear with i)/, and construct

R — AAn " BBn. S = A.A' BnB'
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as in Fig. 4*4a. Then we can locate the X' for a given X by means of

the two perspectivities

R S
MABX ^ MAqBoX^ X MA'B'X'

Here M is the given invariant point. Any other invariant point N
must project from R and jS into the same point on AqBqI hence it

must lie on RS. Thus the projectivity is parabolic if R8 passes through

M, and hyperbolic otherwise.

By 4-21, a hyperbolic projectivity is determined when both invariant

points and one pair of corresponding points are given:

MNA - MNA'

Such a projectivity exists for any four collinear points M, N, A, A'

.

To construct it, choose any two points R and /S collinear with N,

JR R

locate Aq = AR ' A' and use the line ilfAo as before. For any A' on

MA we have
R S

MNAX ^ MNoAoXo t MNA'X'
as in Fig. 4*4b.

The pair AA' may or may not separate the pair MN. In the latter

case, by 3-32, S{MNA) = S(MNA'). Hence:
4*42 The hyperbolic projectivity MNA — MNA' ?*.s' opposite ij

MNf!AA' and direct otherwise.*

The above construction remains valid when N coincides with M
(so that the projectivity is no longer hyperbolic but parabolic, as in

Fig. 4*4c). In this case, if X is taken at A', the quadrangle RSA^Xa
gives AX'). Conversely, such a figure can be reconstructed

from any harmonic set MA', AA"

,

and then M is the only invariant

point of the projectivity MAA' — MA'A". Hence:
* Enriques (Ref. 11, p. 101).
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4*43 The projectivity MAA' ^ MA'A" is parabolic ifJl{MA\ AA")
and hyperbolic otherwise.

4*44 Corollary: A parabolic projectivity is determined when its

invariant point and one pair of corresponding points are given.

Such a projectivity is naturally denoted by

MMA - MMA'

therefore we may say that the relation 11{MA\ AA") is equivalent to

MMAA' - MMA'A".

This notation is justified by its transitivity:

4*46 T'he product of two parabolic projectivities having the same
invariant point is another such parabolic projectivity (if it is not merely

the identity).

Proof: Clearly, the common invariant point of the two given pro-

jectivities is still invariant for the product. If any other point A were
invariant, too, the first projectivity would take A to some different

point A' and the second would take A' back to A. By 4-44 the second

would then be just the inverse of the first. Hence, apart from that

trivial case, the product is parabolic with the same invariant point.

EXERCISES
1. Which part of Fig. 4•4a is direct?

2. Draw a figure to illustrate MMAAA" MMAA'A'".

4*6 Periodic Projectivities. Suppose a given projectivity relates

X to X', X' to X", and so on

:

XX'X" • • • - X'X"X"' - X(’*)

If coincides with X for three (and therefore all) positions of A',

the projectivity is said to be periodic and the smallest n for which this

happens is called the period. Thus the identity is of period 1, the

correspondence between harmonic conjugates wo M and N (see 3-41)

is of period 2, and the elliptic projectivity ABC — BCA (Sec. 4*4) is

of period 3.

EXERCISES
1. Show that, if H(AC, RD), ARC x RCD is an elliptic projectivity of

period 4.

2. Show that a parabolic projectivity cannot be periodic. Hint:

S(A/AA'') = S(MA"'A") = ^{MX"X'") = • • •

3. Prove that every periodic liyperbolic projectivity is opposite.
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4. Prove that the only possible period for a hyperbolic projectivity is 2.

(Otherwise the “squared” projectivity X ~ X" would be periodic, hyperbolic,

and direct.)

4*6 Involution. Desargues defined an involution as the relation

between pairs of points on a line whose distances from a fixed point

have a constant product (positive or negative). The following projec-

tive definition is due to von Staudt.*

An involution is a projectivity of period 2:

XX' X X'X

It is remarkable that this relation holds for all positions of X if it holds

for any one position; in other words,

4*61 A projectivity that interchanges two points is necessarily an
involution.

Proof: Suppose we are given AA' ^ A'A. Consider any point A",

and suppose X x By the fundamental theorem 4-21, the given

projectivity is the only one in which

AA'X X A'AX'

By 2-71 there is a projectivity in which AA'XX' — A'AX'X. Hence
this is the same as the given projectivity, and XX' is a doubly corre-

sponding pair. Since X is quite arbitrary, this proves that the projec-

tivity is an involution.

4*62 Corollary: An involution is determined by any two of its pairs.

Notation: The involution AA'BB' x A'AB'B is denoted by

{AA')(BB').

Either pair may be replaced by an invariant point repeated: the
involution AA'M x A'AM is denoted by {AA'){MM).

4*63 If an involution has one invariant pointy it has another, and
the involution is just the correspondence between harmonic conjugates wo
these two points.

Proof: Consider the involution {AA'){MM), and let N be the
harmonic conjugate of If wo ^ and A'. Then N is also the harmonic
conjugate of M wo A' and A. But the involution, being a projectivity,
preserves the harmonic relation. Hence is a second invariant point
(distinct from M, by 3*22). If another pair XX' is used instead of AA',
we still obtain the same harmonic conjugate N

,

since otherwise the
involution would have three invariant points.

* Ref. 40, pp. 119-120.
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Corollary: There is no parabolic involution *

Since the hyperbolic involution AA'MN — A'AMN is com-
pletely determined by its two invariant points, we may denote it by

(MM)(NN).

From 3-41 we immediately deduce the following:

4*64 Every hyperbolic involution is opposite.

Thus every direct involution is elliptic, and for involutions the table

on page 42 becomes simply

Direct Opposite

Elliptic

(0)
1

Hyperbolic

(2)

Any four collinear points A, A', JB, B' determine an involution

{AA'){BB') or AA'B — A'AB'. If the involution is hyperbolic, the

two pairs cannot separate each other (see 3-42). But if the involution

is elliptic, it is direct,

^{AA'B) = ^{A'AB') 9̂ S{AA'B')

and AA'!IBB'

.

Hence:
4*66 The involution {AA'){BB') is elliptic if AA'f/BB' and hyper-

bolic otherwise.

We now recognize the points M and N of 3-62 as the invariant points

of the hyperbolic involution {AB){CD).

The following criterion is often useful:

4*66 A necessary and sufficient condition for three pairs AA' ^ BB't
CC' to belong to an involution is ABCC' - B'A'CC'.

Proof: If CC' is a pair of {AA')(BB')y we have, by 2*71,

ABCC' X A'B'C'C X B'A'CC'

Conversely, the relation ABCC' ~ B'A'CC' x A'B'C'C implies that

the three pairs belong to an involution. (We may have A = A' or

B = B'y but the nature of the proof requires C 9̂ C'.)

* For some purposes it is convenient to admit the “degenerate involution” that

relates every point X to one fixed point M. The appropriate symbol is (AM){BM),
where A ^ B.



ONE-DIMENSIONAL PROJECTIVITIES [4*67

Changing the notation, we may say that a necessary and sufficient
condition for the pair MN to belong to the involution (AB')(BA') is

MNAB A MNA'B'
Of course, (iA.B*){BA') is the same as {AB')(A'B); hence:

4:-67 The relation MNAB — MNA'B' is equivalent* to

MNAA' - MNBB'
If two involutions (AAi){BBi) and (A'Ai)(B'Bi) have a common

pair ikfAT, the above remarks show that

MNAB -yr MNBiAi - MNA'B'
Hence

:

4.68 If JMN is a pair of each of the involutions {AA\){BBx) and
{A'Ar){B'Br), it is also a pair of iAB')(BA').

One reason for the importance of involutions is apparent in the fol-

lowing theorem:
4*69 JLny one-dimensional projectivity may be expressed as the

product of tmo involutions.

Broof

:

Let the given projectivity transform any noninvariant point

A into A.', and A' into A"

.

Then its product with the involution

(-4-^4") transforms the pair AA' into A'A. Hence the product
is itself an involution, and the given projectivity is the product
of these two involutions, since the “square” of an involution is the

identity. (In symbols, if the given projectivity is T, the first involu-

tion /, and the second J, we have J = Tl, whence JI = TI- = T.)

EXERCISES
1 . Show that the relation MNAB — MNBA is equivalent to MN).X
2 . If a hyperbolic projectivity has a pair of corresponding points that are

harmonic conjugates wo the two invariant points, show that it must be an

involution.

3. Given H(^AA', MN) and H(J5jB', MN), prove that A'B' is a pair of the

involution iAB){MN).
4. Prove that two involutions, one or both elliptic, on the same line, always

have a common pair of corresponding points. Hint: Consider the prcxluet

A” -77 of the two involutions (XX^) and {XX-^). If one involution is elliptic

and the other hyperbolic, the product is hyperbolic by 3*61. Let M be one of

the invariant points of this projectivity; then M — and M-^ = M’’. On

’** von Staudt (Ref. 40, p. 59, §120). In this theorem it is the two relations that are

ecpiivalent (each implying the other); the two projectivUies are, of course, distinct.

t Veblen and Young (Ref. 42, p. 224).

t von Staudt (Ref. 40, p. 68 §118).
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the other hand, if both involutions are elliptic, let X be a particular position of

the variable point X. Observe that the product X relates the interval

to the interior interval IXTAA/A-, then use Axiom 3*51.

5. If the harmonic relations H(7iC', AA'), BB'), CC) all

hold, prove that the pairs A A', BB\ CC' belong to an involution.* Hint: Apply
4*63 to the involution BCAA' 77 ACBB\ and deduce ABCC' -a* A'B'C'C.

4*7 Quadrangular Set of Six Points. When we say that four col-

linear points A'y By B' determine an involution (AA')(BB')y we
mean that, for any given point X on the line, we can find a companion
JT' such that XX' is a pair of the involution. So far our only method for

constructing X is by applying, to the special case of AA'B x A'AB'y
the general procedure for ABC — A'B'C' (on one line) described on

Ji

page 39. This would require the use of nine auxiliary points outside

the line. A far more elegant procedure, using only four auxiliary points,

is suggested by the following important theorem (due to Pappus):

4*71 The three 'pairs of opposite sides of a quadrangle meei any line

(not through a vertexf) in three pairs of an involution.

Proof: The given line cannot pass through more than two di-

agonal points; therefore let us assume that it does not pass through

O = PQ • HS. Let A, A', B, B', C, C' be the sections of the respective

sides QRy PS, RP, QS, PQ, RS, as in Fig. 4*7a. Then C 9^ C", and

li S
ABCC' X QP('0 X B'A'CC'

The desired conclusion now follows from 4*66.

* Mathews (Ref. 25, p. 88).

t von Staudt (Ref. 40, p. 122, §222). If the given line did pass through a vertex, say

8y we should have the “degenerate involution”
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We naturally call this the quadrangular involution determined on the

given line by the quadrangle PQRS, and we call AA'BB'CC' a quad-

rangular set of six points.

Conversely, the companion of any given point C in a given involu-

tion {AA’){BB') may be constructed as follows: Draw any triangle

PQR whose sides QRy RP, PQ pass through A, B, C, respectively. This

determines a quadrangle PQRSy where S = A'P • B'Q. Five sides pass

through the five given points A, A', B, B\ C; therefore the remaining

side RS determines the desired companion C' = RS • AB.

The construction for a harmonic conjugate (Fig. 2*5a) arises as the special

case when the line of section joins two diagonal points of the quadrangle, i.e.,

when A = A' and B = B'. We see now that an elliptic involution is just as

easy to construct as a hyperbolic involution with given invariant points.

In Fig. 4 •4a we used a quadrangle A^BqRS to construct the second

invariant point iV of a hyperbolic projectivity MAB x MA’B'. The
pairs of opposite sides of that quadrangle meet the line AB in the

point pairs MNy AB', BA'. Thus 4-66 and 4-67 remain valid when N
coincides withM (or C with C), i.e., when the projectivity is parabolic

instead of hyperbolic. Taking 4-45 into consideration, we see that 4-68

likewise remains valid when M and N coincide. In other wonls:

4-72 M is an invariant point of the involution {AB'){BA') if and
only if MMAB — MMA'B', in which case we have also

MMAA' - MMBB'.

4*73 IfM is an invariant point of each of the involutions

(AAi)(BBi) and {A'Ax){B'B-,),

it is also an invariant point of {AB'){BA').

EXERCISES
1. Take five collinear points A, A', B, B', C, and construct the sixth point

of the quadrangular set, as in Fig. 4-7a. Then (below the line, as in Fig. 2-5c)

make the analogous construction using C" instead of C. Observe that the new
line RS passes through C.

2. Deduce 4-43 from 4-72.

3. How many parabolic projectivities can be found to relate two given
points A and B to two given points A' and B'? (None if AB'//BA'-, two other-
wise. See 4-72 and 4-65.)

4*8 Projective Pencils. For simplicity we have considered pro-
jective ranges; but all our results can be dualized to give properties
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of projective pencils. For instance, the fundamental theorem 4*21

dualizes as follows:

A projectivity {between two pencils') is determined when three lines of

one pencil and the corresponding three lines of the other are given.

When the two pencils have distinct centers, we can dualize Fig. 4*2a

to obtain the following construction for the line x' related to a given

line a: in a given projectivity

ahc X o/h'c'

Draw, as in Fig. 4-8a, the lines

r = (a ’ a'){c * c')> s — (b ' b')(c * c')»

Xo = (r x)(b • a'), x' = (s ‘ xo)(a' • b')

Again, the dual of 4-23 is as follows:

If a projectivity between pencils with distinct centers has an invariant

linCy it is merely a perspectivity (in the sense of Fig. 2-7b).

EXERCISES
1. Given five concurrent lines m, a, b, a', b', construct the second invariant

line of the hyperbolic projectivity mab x ma'h'
.
{Hint: Dualize Fig. 4'4a.)

2. Dualize 4-71. Hence construct the companion of a given line c in a given

involution {aa'){bb').



CHAPTER 5

TWO-DIMENSIONAL FROJECTIVITIES

We shall find that the one-dimensional projectivity considered in

Chap. 4 has two different analogues in two dimensions: one relating

points to points and lines to lines, the other relating points to lines and
lines to points. The former kind is a collineation, the latter a correla-

tion. Although the general theory is due to von Staudt,* and the
names collineation and correlation to Mobius (1827), some special

collineations were used much earlier, e.g.y by Newton and La Hire.f
Moreover, the classical transformations of the Euclidean plane, viz.,

translations, rotations, reflections, and dilatations, all provide instances
of collineations. Poncelet considered the relation between the central
projections of a plane figure onto another plane from two different
centers. He called this special collineation a homology. In Sec. 5-2 we
shall give a purely two-dimensional account of it. Poncelet also con-
sidered a special correlation: the polarity induced by a conic. In
Sec. 5*5, following von Staudt again, we obtain the same transformation
without using a conic. We then find that several famous properties of
conics are really properties of polarities (which are simply correlations
of period two).

6*1 Collineation. t We recall that a collineation is a point-to-point
correspondence preserving collinearity and consequently preserving
the harmonic relation. Thus a collineation induces a projectivity be-
tween ranges on corresponding lines, and a projectivity between pencils
through corresponding points.

6*11 If a quadrilateral or a quadrangle is invariant, the collineation
can only be the identity.

Proof: Suppose a quadrilateral is invariant. Then the sides are four
invariant lines, and the vertices (where the sides meet in pairs) are six

* Ref. 40, pp. 60-66, 125-136.

t See Coolidge (Ref. 5, p. 47).

t von Staudt (Ref. 40, pp. 61, 66, §§123, 130); Cremona (Ref. 8, p. 78); Enriques
(Ref, 11, p. 169).

M
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iuvSirisint points, three on esich side. Hence, hy 4*12, every point on
each side is invariant. Any other line contains invariant points where
it meets the sides and is consequently invariant. Thus the collineation

must be the identity. The dual argument gives the same result for a
quadrangle.

The fundamental theorem has the following two-dimensional

analogue

:

6*12 A collineation is determined when two corresponding quadri-

laterals (or quadrangles) are given.

Proof: Let ABCPQR and A'B'C'F'Q'R' be the two given quadri-

laterals. A line of general position may be described as XF, with X on

AB and Y on AQ^ as in Fig. 5 -Ia.. This determines a line X'Y'

,

where

ABCX X A'WC'X' and AQRY x A'QF'Y'

To prove that the correspondence XY X'Y’ is a collineation, we
have to verify that concurrent lines correspond to concurrent lines,

i.e., that a pencil of lines XY leads to a pencil of lines X'Y'

.

(It will

then follow that collinear points correspond to collinear points.)

For this purpose, let XY vary in a pencil, so that X ^ Y. By our

definition of X'Y' we now have

X' ^X ^Y -Y'

Since A is the invariant point of the perspectivity X x Yy A' must be

an invariant point of the projectivity X' — Y'. Hence, by 4-23, this

projectivity is again a perspectivdty, and X'Y' varies in a pencil, as

desired.

Finally, the collineation A liCPQR A'B'C'P'Q'R' is unique, by
5*11.

EXERCISE
Give two reasons why inversion wo a circle is not a collineation.
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6*2 Perspective Collineation. In particular, a collineation having

two invariant points M and N may be described as relating a quad-

rangle MNAB to a quadrangle MNA'B'.It may happen that the two

corresponding pointsMN • AB andMN • A'B' coincide, as in Fig. 5-2a.

Then the line o — MN contains three invariant points and conse-

quently consists entirely of invariant points. Thus AA' and BB',

meeting o in invariant points, are invariant lines and intersect in an

invariant point 0.

Every line through 0 is invariant. For if 0 does not lie on o, such a

line joins 0 to an invariant point on o; and if 0 does lie on o, we have

three invariant lines through it, namely, o, AA', BB'. Such a 'perspec-

tive collineation, leaving invariant every line through a certain point

0 and every point on a certain line o, is called an elation or a homology

according as the center 0 and axis o are or are not incident.

The above remarks show that every collineation that has three

collinear invariant points (or three concurrent invariant lines) is either

an elation or a homology.

6*21 An elation or a homology is determined iDhen its center and axis

and one pair of corresponding points {collinear with the center) are given*

Proof: Let AA' be the given pair, collinear with the center 0. Any
point X (not on OA) determines C — AX • o and X' = OX • CA', as in

Fig. 5-

2

b. Since all points on o and all lines through 0 are invariant, the

collineation must relate X = OX • CA to the point X' so defined.

* Veblen and Young (Ref. 42, p. 72). This seems to be the first appearance of the

word dation. Poncelet (Ref. 29, pp. 155-169) called every perspective collineation a

homology, and Enriques (Ref. 11, p. 163) distinguished the elation as a “special”

homology.
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5*22 Corollary: A.n elation is determined when its axis and one pair

of corresponding points are given.

The relation, between corresponding points on a given line through

0 is

A A'
X ^ C ^ X'

The only possible invariant points of this projectlvity X — X' are on

AA' or o. Hence:
6*23 An elation or a homology induces a parabolic or hyperbolic

projectivity (^respectively) on any line through its center.

n

Turning to Fig. 2-2a, wc observe that the homology that takes P to

P' (with center 0 and axis ABC) also takes Q to Q' and li to R'. In

the special case when 0 lies on ABC^ we have an elation instead of a

homology. Hence:
6*24 Any pair of Desargues triangles are related by a homology or an

elation.

All the invariant points of an elation lie on its axis. Conversely, a

collineation that has a line of invariant points and no others can only

be an elation. These remarks will enable us to prove the following

:

6*25 The product of two elations having the same axis is another such

elation (if it is not merely the identity).

Proof: Clearly, each point on the axis is invariant. If any other point

A were invariant, too, the first elation would take A to some different

point A' and the second would take A’ back to A. By 5-22 the second

would then be just the inverse of the first. Hence, apart from that
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trivial case, all the invariant points of the product must lie on the

axis (cf. 4-45).

Consider once more the homology determined by 0, o, A, and A'» as

in the second part of Fig. 5*2b. Let OA and OX meet o in and Xo.

The homology is said to be hcLTmonic if H(0^o» AA'). In this case we

can simply locate X' as the harmonic conjugate of X wo O and Xo.

Hence

:

6*26 A harmonic homology is determined when its center and axis

are given.

By an argument similar to that used in proving 5-25, we have the

following

:

6*27 The product of two harmonic homologies having the same axis

is an elation.

Conversely

:

5*28 An elation with axis o may he expressed as the product of two

harmonic homologies having this same axis o.

Proof: Let the elation be determined by o, X, and A'y as in the first

part of Fig. 5 •2b, and let 0i be the harmonic conjugate of 0 = AA' • o

wo A and A'. Then the harmonic homologies with centers A and 0i

^ will have the desired effect, since

the first leaves A invariant, while

the second takes it to A'.

EXERCISES

1. Show that the central projections

of a plane figure onto another plane

from two different centers are related

by an elation or honniology. {Hint: The
relation is a collineation with a line

of invariant points where the two planes intersect.)

2. Justify the above statement that a collineation having a line of invariant

points and no others can only be an elation.

6.3 Involutory Collineation. A collineation may be periodic accord-

ing to the definition in Sec. 4*5. A collineation of i)eriod 2 is said to be

involutory.

6*31 Every involutory collineation is a harmonic homology.

Proof: Let the given involutory collineation interchange the pair of

points AA' and also another pair BB' (not on the line AA'). The
invariant lines AA' and BB' intersect in an invariant point 0, as in
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Pig. 5'3a. Since the collineation interchanges the pair of lines AB,

A'B' and likewise AB', A'B, the two points

P = .45 * A'B' and Q = AB' > A'B

are invariant. Moreover, the two invariant lines AA' and PQ meet in a

third invariant point ylo on PQ. Hence the collineation is either an

elation or a homology. Since the invariant point 0 does not lie on

PQ, it must be a homology; and since H{AA't OAo) it is a harmonic

homology.

5.32 Two harmonic homologies commute if and only if the center of

each lies on the axis of the other.

Proof: Let two harmonic homologies H' have centers 0, O' and

axes 0 ,
o'. If 0 lies on o' and O' on o, any two points that are harmonic

conjugates wo 0 and 0' are interchanged by each homology. Hence

the product HH' leaves invariant every point on 00', and similarly

every line through o • o'. Thus HH' is a homology. To see that it is

harmonic, we consider two points that are harmonic conjugates wo 0

and 0 • o'. These are interchanged by H but invariant for H'. Thus

HH', and similarly H'H, is the harmonic homology with center 0 • o'

and axis 00'.

Conversely, if H and H' commute, their product HH', being equal

to its inverse H'H, is an involutory collineation, i.e., another harmonic

homology. Now, H' transforms any i)oint X on o into a point X^' on

o^'. Since X is invariant for H, the point

Xir _

is likewise invariant for H. But A'"' may be any point on o^'. There-

fore 0 "' coincides with o, the a.xis of H; that is, o is invariant for H' and

either coincides with </ or passes through O'. The former possibility is

ruled out since, by 5’‘P7, the product HH' would then be an elation.

Hence o passes through O', and similarly o' through 0.

EXERCISE
Show that the product of three harmonic homologies, whose centers and

axes are tlie vertices and sides of a triangle, is the identity.

6*4 Correlation. We come now to the second kind of two-dimen-

sional projectivity. A correlation is a point-to-line correspondence

relating collincar ])oint.s to concurrent lines; it therefore relates con-

current lines to collincar points. Incidences arc dualized: we have

X x' and z —> X'

,

where line x' passes through point X' if and only
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if point X lies on line x. The range of points X on a given line x corre-

sponds to a pencil of lines x' through the corresponding point X'

.

Since a quadrangle corresponds to a quadrilateral, four positions of X
forming a harmonic set of points correspond to four positions of x'

forming a harmonic set of lines. Thus a correlation induces a projec-

tivity between any range and the corresponding pencil.

6*4:1 A correlation is determined when a quadrilateral and the corre-

sponding quadrangle are given*

B

Proof: Let ABCPQR and a'h'c'p'q'r’ be the given quadrilateral and
quadrangle, as in Fig. 5-4a. A line XF, with X on AB and F on AQ,
determines a point x' • y' where

ABCX - a'h'c'x' and AQRY - a'q'r'y'

To prove that the correspondence XY x' • t/' is a correlation, we
have to verify that a pencil of lines XF leads to a range of points x' • y'.

Let XF vary in a pencil, so that A" ^ F and therefore x' y'.

Since A is the invariant point of the perspectivity X ^ Y, a' must be
an invariant line of the projectivity x' — y'. Hence, by the dual of
4-23, this projectivity is a perspectivity, and x' • y' varies in a range as
desired.

Since the product of two correlations is a collineation, the uniqueness
of the correlation ABCPQR-^ a'h'c'p'q'r' is another consequence of
5T1. In fact, by combining one such correlation with the inverse of
another, we should obtain a collineation leaving the quadrilateral
invariant.

6*6 Polarity. In general, a correlation relates a point X to a line

x' and relates this line to a new point X"

,

The correlation is involutory

* Veblen and Young (Ref. 42, p. 264).
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(i.e., of period 2) if X" always coincides with X, in which case we may
omit the prime ['] without causing any confusion. An involutory cor-

relation is called a 'polarity. Thus a polarity is a correlation that relates

X to X, and vice versa. Following Servois and Gergonne, we call X the

pole of X and x the polar of X.
This terminology may be justified as follows: The section of a sphere

by a plane through the center is a great circle, and the “axis” of this

circle meets the sphere in two poles {e.g., the North Pole and South
Pole are the poles of the equator). When we make a gnomonic projec-

tion (from the center onto an arbitrary plane), the great circle and the

two poles yield a straight line and a single point, the pole of the line.

This is easily seen to satisfy the above description of a polarity. (It

differs from the polarity wo a conic, in that no point lies on its own
polar.)

As a consequence of the general properties of a correlation, we see

that the polars of all the points on a line a form a projectively related

pencil of lines through the pole A.
Since a polarity dualizes incidences, if A lies on 6

, a passes through
B. In this case we say that .;I and B are conjugate points, a and b are

conjugate lines. If A and a are incident, A is a self-conjugate point and
a a self-conjugate line. So far as we can tell at present, it might happen
that every point and line would I>e .self-conjugate; but the following

theorem shows that this is not so:*

6*61 The join of two self-conjugate points cannot he a self-conjugate

line.

Proof: If a line s contains two .self-conjugate points A and B, the

polars of these points are a = . KS and h = BS, where *S is the pole of s.

Since a polarity is a one-to-one correspondence between points and
lines, these two polars must be distinct; therefore *S does not lie on
AB, that is, s is not self-conjugatt*.

As a further limitation on the occurrence of self-conjugacy, we shall

prove the following:*

5*62 It is impossible for a line to contain more than two self-conjugate

points.

Proof: Let A and B be two self-conjugate points on s, and let P be a
point on AS or a, distinct from A and S. Let the jjolar p meet 6 in Q
(see Fig. 5*5a). Then Q == b ' p is the pole of BP = g, which meets

p in Ry say. Also, R ~ p • g is the pole of PQ = r, which meets s in C,

say. Finally, C = r ’ s is the pole of RS == c, which meets s in D, the

* Enriques (Ref. 11, pp. 184, ISfl).
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harmonic conjugate of C wo A and B. Now, C cannot coincide with

^ or jB ; for then P would coincide with A or S. Hence C, not lying on
c, is not self-conjugate.

We thus have, on s, two self-conjugate points A, B and a non-self-

conjugate point C. But the self-conjugate points on s are the invariant

points of the projectivity X x ' s induced on s by the given polarity.

Hence this projectivity is not the identity, and cannot have more than

two invariant points; i.e.y the line s cannot contain more than two self-

conjugate points of the polarity.

We can now easily prove:

6*63 A polarity induces an involution of conjugate points on any line

that is not self-conjugate and an involution of conjugate lines through any
point that is not self-conjugate. *

Proof: The projectivity X x ’ s on s relates any non-self-conjugate
point C to another point D = c • s, whose polar is CS. Hence the same
projectivity relates D to C; that is, it interchanges C and I). By 4-61, it

must be an involution. (In the proof of 5*52 this was a hyperbolic
involution; but it can just as well be elliptic.)

Dually, X and XS are paired in the involution of conjugate lines

through S.

The following theorem is famous (as a property of a conic)

:

6*64 Hesse’s Theorem: If two pairs of opposite vertices of a quadri-
lateral are pairs of conjugate points (in a given polarity), then the third

pair of opposite vertices is likewise a pair of conjugate points.

* von Staudt (Ref. 40, p. 134, §239). On a self-conjugate line s the conjugate points
form a “degenerate involution”: each point is conjugate to the single point S.
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Instead of this, we shall prove the dual:

5-66 If two pairs of opposite sides of a quadrangle are pairs of conju-
gate lines, then the third pair of opposite sides is likewise a pair of conju-
gate lines

*

Proof: Given QR conjugate to P8, and PR conjugate to QS, we wish
to show thatPQ is conjugate to R8. Let these six lines meet s (the polar
of S) in A, A', B, B', C, C', as in Fig. 5 5b (or Fig. 4'7a). Since PS
passes through S and is conjugate to QR, its pole is s QR = A ; hence
PS is a. Similarly QS is b. Thus the involution of conjugate points on

S

-4 C B' C' ^ JB
Fig. 5-5b

5 is (AA')(BB'). By 4-71, C(l'

RSC' is the i)oiar of C and is

is another pair of this involution. Hence
conjugate to PQC\

The above proof would break <lown if the point S were self-conjugate.

For the sake of completeness, therefore, we must make sure that the
four vertices of such a (luadrangle cannot all be self-conjugate.

6-66 If all four vertices of a quaxlrangle are self-conjugate points, at

most one pair of opposite sides can he conjugate lines.

Proofs

:

Let PQRS be a quadrangle of self-conjugate points, so that
S lies on its own polar s as well as on the sides a = PS, b = QS,
c = RS, whose i)oles are .1 = p • s, B = q- s, C = r s. If the sides

QR and PS are conjugate lines, let 0 be their point of intersection, as

in Fig. 5-5c. Since the pole /I lies on QR, and <7 * r on a, we have

ashc .LS’/yf/V AOQR x sabc,

whence ll{sa,bc). Similarly, if RP were conjugate to QS we would
have ll{sb,ca), and if PQ were conjugate to RS we would have H(sc,a6).
By 3-21 and 3- 17, only one of lliese three harmonic relations can hold.

* von Stundt (lief. 40, p. §••244). I'\>r si sliglitly iliffcrent proof see Cremona (Ref. 8,

p. 238).

t Kindly supplied by Patrick Du Val of Istanbul University.
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EXERCISES
1. Observe that the polarity of 5*52 (Fig. 5*5a) relates the quadrangle

PQRS to the quadrilateral ABCPQR and the harmonic set of points At B, C,

D to the harmonic set of lines SA, SB, 8D, SC.

2. Justify the statement (in the proof of 5-52) that C coinciding with A or

B would make P coincide with A or S.

6*6 Polar and Self-polar Triangles.* The 'polar triauijlc of a, given

triangle is formed by the polars of the vertices and the i)oles of the sides.

6‘61 Chasles’s Theorem: A triangle and its polar triangle (if dis-

tinct) are a pair of Desargues triangles.

Proof: Let P'Q'R' be the polar triangle of PQIl. Consider the (juad-

rangle PQRS, where S is PP' • QQ'. We haveP.S (through P') conjugate

to p' = QR, and QS (through Q') conjugate to c/ = PR. By 5-55, RS is

conjugate to r' = PQ and therefore passes through R', as in Fig. 5-6a.

Thus corresponding vertices of the two triangles PQR and P'Q'R' are

collinear with S.

A triangle is said to be self-polar if each vertex is th(^ ])ole of the op})o-

site side. Any two points (or lines) that are conjugate hut not self-

conjugate determine a self-polar triangle; for if A and B are conjugate
points on a non-self-conjugate line c, each vertex of triangle ABC is

the pole of the opposite side. Any two vertices (or sid(\s) are conjugate.

The occurrence of such a triangle is characteristic of a polarity, as the
following theorem shows:

* von Staudt (Ref. 40, pp. 131-135, §§234-242); Enriques (lief. 11, pp. 182, 187).
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6*62 Any correlation that relates the three vertices of one triangle to

the respectively opposite sides is a polarity.

Proof: Consider the correlation ABCP —> abcp, where a, 6 , c are the
sides of the given triangle ABC and P is a point of general position.

Let Ap, Bpy Cp, Pa, Pb» Pc denote the respective points

a • p, 6 • p, c p, a ' AP, h • BP, c • CP

as in Fig. 5'6b. The correlation not only relates A, B, C to a, b, c but

A

also relates a, b, c to A, B, C; for it relates a — BC to A = b ’ c, and
so on. Moreover, it relates AP to Ap, and consequently Pa to AAp.
We wish to show that it relates p to P.

Consider the projectivity X — x - a induced on a. Since b • a and
c a are C and B, this projectivity interchanges B and C; hence it is an
involution. Since PaAp is a pair of the involution, the correlation works
as follows: Ap—^ APal similarly Bp —> BPb’, hence ApBp —^ APa * BPh\
that is, p P.

6*63 Corollary: A polarity iji determined when a self-polar triangle

and one further pole and polar are given.

Notation: The polarity with self-polar triangle ABC, relatingP and p,

is denoted by
{ABC){Pp)

In using this symbol, we assume that P does not lie on a side of triangle

ABC and that p does not pass through a vertex.

We proceed to describe a construction (Fig. 5

-

60) for the polar of

any point X in a given polarity {ABC){Pp). If X is distinct from P,
it cannot lie on more than one of the lines AP, BP, CP, and we may
suppose A, B, C to be named in such an order that X does not lie

on either of AP, BP. The construction is as follows:
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6*64 The polar of any point X in the polarity {ABC){Pp) is the line

[AP • (a • PX){p • AX)][BP • (6 • PX){p • BX)].

Proof: We have to show that the polar of X is the line YZ deter-

mined by

Ai = a-PX, £J = p-AX, r = APAiP
Bi = bPX, P = p- BX, Z = BP- BrF

By Hesse’s theorem (our 5-54), applied to the quadrilateral AAxPEXY
(Fig. 5-6c), since AA\ and PE are pairs of conjugate points, XY is

another pair of conjugate points. Thus X is conjugate to Y and
similarly to Z. Therefore x = YZ.

In 5-63 a polarity was determined by means of a self-polar triangle

and one further pole and polar. Another way wouhl be l)y means of a
self-polar pentagon such as PBC^^BpC, that is, a pen tagon whose vertices

are the poles of the respectively opposite sides. In fact:

6*65 The correlation that relates four vertices of a pentagon to the

respectively opposite sides relates the fifth vertex to the fifth side and is a
polarity.

Proof: The correlation that relates the vertices Q, /?., S, T of a
pentagon PQRST to the sides ST, TP, PQ, QIl also relates the point
A =QR- ST to the line (ST - TP)(PQ - Qll) = TQ. Thus it relates

each vertex of triangle AQT to the opposite side and is a i>olarity, by
5-62. Finally, since it relates RS to TP - PQ = P, it also relates P to HS.

EXERCISES
1. Let AA , BB', CC' be a quadrangular sot of points and S any point out-

side their line. Prove that any correlation which relates S, A, B, C to AB, SA',
SB', SC' is a polarity (Fig. 5-5b).

2. Show how the construction 5-64 becomes partly ind(‘lerminato wlien P is

given on BC or AB (and p through A or C, respectively). Hint: If P lies on BC,
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so also does Z; Y may be any point on AP, and x any line through Z.llP lies

on AB, Y and Z coincide; for then ABY is the Pappus line of the hexagon
A\EXFBiC (see 4‘31).

3. By dualizing 5 64, derive X from x (Fig. 5-6d).

4. Consider the self-polar pentagon PQRST of Theorem 5*65. Let an arbi-

trary line through P meet 8T in U and QR in V. Prove that RU and SF are

conjugate lines. Deduce a construction for the polar of any given point X.

S

6*7 The Self-polarity of the Desargues Configuration. Chasles’s

theorem (our 5-61) has the following interesting converse, due to von
Staudt

:

6*71 Any pair of Desargues triangles are polar triangles in a certain

polarity.

Proof:* Let the triangles PQR and P'Q'R' be “in perspective” from
the point S and the line ABCy as in Fig. 5-7a. Consider the polarity

{SAAi){Q'q')y where Ai = AB SP and r/ = BP. Since QB (through

A) is conjugate to PS(= SAi), while QS (through Q') is conjugate to

BP (= q'), 5-55 shows that BS is conjugate to PQ. Thus QS (= Q'S)

is the polar of q' • s — B, and BS is the polar of PQ, • s — C. The
polarity works as follows : The polars of

Q'. S, A, By Cy Py By P'y Qy B'

are

q' = RPy s - AAiy a = PSy b = QS, c = BS
p = AQ'y r = CQ'y p' = ARy q = BP\ r' = CP

(Each polar in the second row is derived from two {jrevious results;

for example, pisAQ' because P is a • q'
.) In this manner we see that the

*This is perhaps a little simpler than von Staudt (Ref. 40, p. 134, §241).



66 TWO-DIMENSIONAL PROJECTIVIT lES [5-8

10 lines of the Desargues configuration are the polars of its 10 points.

In particular, PQR and P'Q'R' are polar triangles.

EXERCISES
1. Let n denote the polarity of 5-71 and F the homology or elation of 5-24.

Prove that FII = (PQR)(Ss) andllF = (P'Q'R')(Ss). Deduce that these two

polarities coincide when F is a harmonic homology.

2. Prove that the polarity (ABC')(Nn) interchanges the nine points and

nine lines of the Pappus configuration (Fig. 4-3a and b) if and only if the lines

LA', MB', CN are concurrent. Hint: If those three lines are concurrent, con-

sider the polarity of 5-71 as applied to triangles LMC and A'B'N. Sliow that

B is the pole of AC', by applying 5*55 to the quadrangle AC'BB'.* (Since the

general Pappus configuration is self-dual without being self-polar, the old

controversy between Poncelet and Gergonne is settled in the latter’s favor.)

3. Show that the Desargues configuration contains 12 self-polar pentagons

such ais ABPSQ', any one of which could be used to determine von Staudt’s

polarity (cf. Sec. 2-2, Exercise 4).

6*8 Pencil and Range of Polarities.f The various polarities that

have a given self-polar triangle and a given pair of conjugate points

(or lines) are said to form a pencil (or range) of polarities. Thus, given a

self-polar triangle ABC, the polarities {ABC){Pp) form a pencil if P
is fixed while p varies in a pencil of lines; dually, they form a range if

p is fixed while P varies along a line. Thus any two i)oiarities tliat have
a common self-polar triangle belong to a definite pencil and to a

definite range.

6*81 The polars of any fixed paint X, wo a pencil of polarities, form
a pencil of lines.

Proof: Referring to the construction 5-64 for the i>olar of A' in

{ABC){Pp), let p rotate about a fixed point P'. Then F varies on AP,
and Z on BP, in such a way that

Ai P' Bx
Y E ^ F ^ Z

But the projectivity Y — Z has P as an invariant point, arising when

p is P'X (so that E and F coincide with A'). Hence ^ Z; tliat is, the

line X = YZ passes through a fixed point A”'.

An important special case occurs when P' lies on a side of the tri-

angle, say on a, so that the fixed point P' is the A „ of Fig. 5-()n. Then tlie

* This method i.s due to Alex Rosenberg, an undergraduate at the University of

Toronto.

j" This section may be omitted on first reading or in a short course.
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involution of conjugate points on a is (jBC')(-4pPo), the same for all the

polarities. The self-polar triangle is no longer unique; for any pair of

this involution would form with A a self-polar triangle that could be

used instead of ABC. Any point X projects from A into a point Xa on

a, and the polars x form a pencil of lines through Ax, the companion of

Xa in the involution {BC) {ApPc). Conversely, if any line x meets a in

Ax, its poles X all lie on the fixed line AXa, where Xa is the companion

of Ax. Hence this kind of pencil of polarities is at the same time a range.

Let us simply call it a self-dual system of polarities. To sum up:

6*82 A self-dual system admits a line a on which the involution of

conjugate points is the same for all the polarities. The polars of any point

P form a pencil of lines through a fixed point Ap on a, and the poles of

any line p form a range on a fixed line APa, where A is the pole of a (for

all the polarities).

The product of two polarities (or, indeed, of any two correlations)

is a collineation. In particular,

6*83 If two polarities belong to a self-dual system, their product is a

homology.

Proof: Since the polarities induce the same involution of conjugate

points on the line a and the same involution of conjugate lines through

the point A, their product leaves invariant every point on a and every

line through A.

Conversely,

6*84 Any homology’*^ can he expressed as the product of two polarities

belonging to a self-dual system.

Proof: The homology with center A and axis B(^, relating Pi to Pz

(on a line through A), is the product of polarities (ABC) (Pip) and

(ABC) (P2P), where p is an arbitrary line.

EXERCISERS

1. Show that the relation between A and A^' in 5*81 is symmetric (r.e.,

involntory) : the polars of X' all pass through A'. (Hint: X and X' are conju-

gate points.)

2. Show that the correspondence A" —> A”' is not a collineation. (Hint: Take

X at various positions on AB.)

3. Dualize 5*81.

* Veblen and Young (Rof, 42, p. 265) prove the more general statement that any

collineation can be expressed as the product of two polarities. Itut their construction

breaks down if the collineation is involutory.
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4. Show that the two polarities {ABC)(Pip) and {ABC)(JPip) will commute
if H(^Pa, P1P 2).

5. Show that the polarities of Sec. 5 '6, Exercises 1 and 2, belong to self-dual

systems.

6. Show that a range of polarities is determined by a self-polar pentagon

PQRST, where P varies along a line while the other four vertices remain fixed.



CHAPTER 6

CONICS

6*1 Historical Remarks. The study of conic sections (or, briefly,

conics) is said to have begun in 430 b.c., when the Athenians, suffering

from a plague, appealed to the oracle at Delos and were told to double

the size of Apollo’s cubical altar. Let a denote the edge of the original

cube and x that of the enlarged one; then the requirement is

ic® = 2a®

or x/a = Hippocrates reduced the problem to that of finding

values of x and y to satisfy the equations

o> _ X _ y
x y 2a

Menaechmus, about 340 b.c., gave two solutions: one using the two
parabolas = 2a.r, .r® = ay, and the other using the latter parabola

along with the rectangular hyperbola xy = 2a®. Without the benefit of

algebraic notation, this was surely a marvellous achievement. In fact,

it shows that Menaechmus came close to anticipating by 2000 years

the analytic geometry of Fermat and Descartes. He jjrcsumably ob-

tained these curves as plane sections of a right circular cone. (Hence

the name conic section.) But purely two-dimensional constructions were

soon devised by his successors. According to Zeuthen, it was Euclid

who first constructed a conic as the locus of a point whose distance

from a fixed point (focus) is proportional to its distance from a fixed

line (directrix). The names ellipse, parabola, hyperbola are due to

Apollonius (262—200 b.c.), who discovered an astonishing number of

their properties. He even anticipated Steiner’s theorem (our 6-52). Some
further results were obtained by Pappus, about A.n. 300, but after that

time the whole subject was forgotten for 12 centuries.

In fact, no new contribution of any imii)ortance was made until

1522, when Verner of Nuremberg derived certain properties of conics by
projecting a circle. For the next three centuries, apart from Kepler,

Newton, Maclaurin, and Braikenridge, the subject was developed
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largely by Frenchmen: Desargues, Pascal, Mydorge, La Hire, and then

Gergonne, Brianchon, Poncelet, Chasles. Kepler showed how a para-

bola is at once the limiting form of an ellipse and of a hyperbola, thus

paving the way for consideration of the general conic. The name of

Braikenridge (1700-1759) is not very familiar, but he shares with

Maclaurin the honor of discovering the first nonmetrical construction

for a conic.

The more recent developments are dominated by the names of two
great Germans: Steiner (1796—1863) and von Staudt. We shall see, in

Sec. 6*5, how their two ways of approaching the conic may be recon-

ciled. The polarity induced by a conic is implicit in some of the work
of Apollonius and was clearly understood by La Hire (1640-1718), but
it was von Staudt who turned the tables by allowing the polarity to

define the conic. This standpoint provides the most symmetrical
definition for conics and emphasizes their self-dual nature, as we shall

see in Sec. 6*3.

6*2 Elliptic and Hyperbolic Polarities.* We recall that an in-

volution is hyperbolic or elliptic according as it <loes or docs not admit
an invariant point, that a hyperbolic involution has not merely one
but two invariant points, and that the involution {AB){CD) is ellip)tic

or hyperbolic according as D does or does not lie in the segment yl/i/C.

Analogously, a polarity is said to be hyperbolic or elliptic according
as it does or does not admit a self-conjugate point, i.e., a point lying

on its own polar. We shall find that a hyperbolic ])olarity has not merely
one but infinitely many self-conjugate points, forming a curve (in fact

a conic), and that the polarity {ABC){Pp) is elliptic or hyperbolic

according as P does or does not lie in the triangular region ABCfp.

6*21 IfP lies in ABCJpy the polarity {ABC'){Pp) is elliptic.

Proof: Let p meet the sides of triangle AB(! in yl^,, Bj„ as in

Fig. 6'2a, and let the three lines AP, BP, CP meet the respectiv'e sides

in Pa, Ph, Pc- If P lies in the region ABC/p, then lies in the segment
BCJAp and the involution {BC)(ApPa) is elliptic. But this is the in-

volution of conjugate points on the line BC. Similarly, the involutions

on the other sides are elliptic, too. If instead of p we take another line

X (not through a vertex), we obtain other pairs of these involutions;

hence the points Xa,.Xb, Xc (determined on the sides by the pole A') lie

in the respective segments BCjAx, CA/B^, ABIC::,. Thus A' lies in the
region ABClx and cannot lie on x. This means that there are no self-

conjugate points, except possibly on a side of triangle A BC. But a self-

* von Staudt (Ref. 40, p. 133, §237); Enriques (Ref. 11, pp. 187 101).
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conjugate point on a side would be an invariant point of the involution

of conjugate points on that side, and we have just seen that such an
involution is elliptic. This completes the proof-

6‘22 IfP does not lie in ABC hut in one of the other three regions,

the polarity {ABC) {Pp) is hyperbolic.

Cp cp

Proof: For definiteness, suppose that P lies in the region penetrated

by p through sides a and b, as in Fig. 6*2b. Then Ap and Pa both lie in

the same segment BC, and thus the involution {BC){AiBa) is hyper-

bolic. Since this is the involution of conjugate points on a, its invariant

points are self-conjugate.

Similarly, there are two self-conjugate points on b, though none on c.

6*23 Corollary: Both elliptic and hyperbolic polarities exist.

E E

The following temporary definitions will be found helpful in Sec. 6-3

but thereafter will be superseded : Let a j)oint that is not self-conjugate

be called an B point or an H point according as the involntioii of conju-

gate lines through it is elliptic or hyperbolic, and let a line that is not

self-conjligate be called an e line or

an h line according to the nature of

the involution of conjugate points

on it. We see at once that in an

elliptic polarity every point is an R
point and every line is an e line;

and it emerges from the above proof

of 6-22 that any self-polar triangle

E

Fir. 6-2c

ioY a hyperbolic \)o\'ATity has two h sides and one e side and consequently
two TI vertices and one E vertex, ((^f course, the ]iolc of an e line or h

line is an E point or TI point, respectively.) Self-polar triangles in the
two cases are represen tetl diagrammatically in Fig. 6-2c.

EXRRClSEt^

1. Carry out the construction 5-()4 in the special ease when /* li<‘S on p.

Observe that -Y lies outside the r<‘gion AJiC/x.
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2. Show that the two self-conjugate points on an h side (of a self-polar

triangle for a hyperbolic polarity) lie respectively on the two self-conjugate

lines through the opposite H vertex.

3. Which are the JS vertex and e side of the triangle ABC in Fig. 5*6b?

6*3 How a H3rperbolic Polarity Determines a Conic. Any line

that is not self-conjugate may be used as a side' of a self-polar triangle.

Thus, in the case of a hyperbolic polarity, every point on an e line is

an S' point, but an h line contains points of both types, separated by

the two self-conjugate points (which are the invariant points of the

involution of conjugate points on the h

line). Dually, the pencil of lines through

an E point consists entirely of h lines,

but the pencil of lines through an H
point contains both types, separated by
the two self-conjugate lines. Thus we
have through an E point a pencil of h

lines, each containing two self-conjugate

points, and on an e line a range of

H points, through each of which two self-conjugate lines can be drawn.

Hence

:

6*31 A hyperbolic polarity admits an infinity of self-eonjnyate points

and an infinity of self-conjugate lines.

Following von Staudt, we define a conic to be the locus of self-conju-

gate points in a hyperbolic polarity.* An h line (meeting the conic in

two points, as in Fig. 6-3a) is a secant. A self-conjugate line (meeting

the conic only at its pole) is a tangent^ and the pole is its point of contact.

An e line (containing no self-conjugate points) is an exterior line. The
pole of a secant is an exterior point {II point), which lies on two tangents

(the invariant lines of the involution of conjugate lines through it).

Finally, the pole of an exterior line is an mterior point {E point), which

is characterized by the fact that no tangents can be drawn through it.

Thus a conic is essentially a self-dual figure: it is the locus of self-

conjugate points and also the envelope of self-conjugate lines. Any of

its properties can immediately be dualiz(‘d by a])plying the polarity

that defines it.

By our remarks about H points and c lines, every point on an

exterior line is an exterior point. Dually, every line through an interior

point is a secant. Again, any point on a tangent, except the jjoint of

contact, is exterior; and every line through a point on the conic, except

the tangent there, is a secant.

* von Staudt (Ref. 40, p. 137, §246); Enriques (Ref. 11, pp. 199-201, 261-262).
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EXERCISES

1. Show that every point on a tangent is conjugate to the point of contact.

Dually, the tangent itself is conjugate to any line through the point of contact.

%. Show that the polar of any exterior point joins the points of contact of

the two tangents that can be drawn through the point. Dually, the pole of a

secant PQ is the point of intersection of the tangents p and q.

3. If PQR is a triangle inscribed in a conic, the tangents at P, Q, R form a

triangle circumscribed about the conic. Prove that these are a pair of Desar-

gues triangles. {Hint: Use 5'61.)

4. If the tangents to a given conic meet a second conic in pairs of points,

show that the tangents to the second conic at these pairs of points meet on a

third conic. {Hint: Any construction for the first conic will be transformed, by
the polarity wo the second, into the dual construction for the third.)

6*4 Conjugate Points and Conjugate Lines.* The following

“harmonic property” can be traced back to Apollonius:

6*41 Any two conjugate points on a secantPQ are harmonic conjugates

wo P and Q.

Proof: The self-conjugate points P and Q are the invariant points of

the involution of conjugate points on the line PQ (see 4-63).

Dually,

6*42 Any two conjugate lines through an. exterior point are harmonic

conjugates wo the tangents that can be drawn through the point.

The following theorem will enable us to construet the polar of a given

point wo a given conic:

6-43 If a quadrarigle is inscribed, in a conic, its diagonal triangle is

self-polar.

Proof: Let the diagonal points of the inscribed quadrangle PQRS be

A = PS • QH, B = QS • lil\ C = ns • PQ
* von Stuudt (Ref. 40, pp.189-140, §§‘249-251).
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as in Fig. 6-4a. The line BC meets the sides QR and PS in points Ai

and Ai such that Jl{QR, AAi) and H(PS, .4.4.2). By 6-41, Ai and ^42

are conjugate to A. Hence the line BC» which joins them, is the polar

of A. Similarly CA is the polar of B and AB of C.

Hence

:

6.44 To construct the 'polar of a given point A^ not on the comc^ draw

any two secants QR and PS through A; then the polar is

{QS • RP){RS PQ)

In other words, we draw two secants through A to form an inscribed

quadrangle with diagonal triangle ABC, and then the polar of A is BC.

The dual construction presupposes that we know the tangents from

any given exterior point. This presents no serious difficulty (since

their points of contact lie on the polar of the given point); hut the

tangents are not immediately apparent, for the .simple reason that we
are in the habit of dealing with loci rather than envelopes. If we insist

on regarding the conic as a locus, we may construct the pole of a given

line as the point of intersection of the polars of any two points on the

line. Then:
6-46 To construct the tangent at a given point A on the conic, join A

to the pole of an arbitrary line through A.

Theorem 6-43 and its dual may be neatly brought together as

follows

:

6*46 A quadrangle PQRS, inscribed in a conic, has the same diagonal

triangle as the quadrilateral of tangents pqrs.

Proof: Defining A, B, C as before, we observe that A lies on the

polars of both q • r and p • s (see Pig. 6-4b). Hence the diagonal

(q ' r)(p ’ s) of the quadrilateral is the polar of A, that is, it coincides

with BC. Similarly the other two diagonals are CA and AB,
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EXERCISES
1. Let B and C be two conjugate points wo a given conic. Let an arbitrary

line through C meet the conic in P and Q, while BP and BQ meet the conic

again in R and /S, respectively. Prove that C, R, S are collinear.

2. If PQR is a triangle inscribed in a conic, show that infinitely many self-

polar triangles can be found having one vertex on each side of PQR.
3. Show that infinitely many triangles can be inscribed in a given conic in

such a way that each side passes through one vertex of a given self-polar

triangle.

4. Prove that a conic is transformed into itself by any harmonic homology
whose center is the pole of its axis.

5. If the six points P, P\ Q, Q\ R, R' of tlie Desargues configuration (Fig.

2-2a) lie on a conic, prove that 0 is the pole of the line ABC wo that conic.

Deduce that the homology of 5-24 is then harmonic, so that the polarities

(PQR) (Oo) and (P'Q'R') (Oo) coincide. Show also that any line through 0 meets
the six sides of the two triangles in a quadrangular set of points.*

6*6 Two Possible Definitions for a Conic, f We have followed

von Staudt in defining a conic as the locus of self-conjugate points in a
hyperbolic polarity. Another definition, often used, is Steiner’s (1832)

:

A conic is the locus of the point of intersection of corresponding lines

of two projective (but not persiiective) pencils. We proceed to reconcile

these two definitions. Theorem 0*52 will show that every von Staudt
conic is a Steiner conic, and 6*54 will show that every Steiner conic is

a von Staudt conic.

As a first stcj) we need:

6*61 Seydewitz’s Theorem: If a triangle inscribed in a conic, any
line conjugate to one side meets the other two sides in conjugate points.

Proof: Consider an inscribed triangle PQR. Any line c conjugate to

PQ is the polar of some point C on P(^. Let RC meet the conic again in

S, as in Fig. 6*4a. By 6*43, c joins the points

A - PS • QR, B = QS RP

These conjugate points /I ami B are the intersections of c with the

sides QR and RP of the given triangle.

6*62 Steiner’s Theorem : Let lines x and y jam a variable point on a

conic to two fixed points on the same conic; then x x //•

* Mathews (Ref. 2,5, p. 338, Exercise lO-t).

t von Staudt (Ref. 40, pp. 141-144, §§253-2,58).
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Proof: The tangents p and g, at the fixed points P and Q, intersect

in Z), the pole of PQ. Let c be a fixed line through D (but not through
P or Q)y meeting x and y in B and -d, as in Pig. 6-5a. By 6-51, BA is a
pair of the involution of conjugate points on c. Hence, when the point

X • y varies on the conic,

^ ~ ^ ~7\ ~ y

We shall prove the converse theorem with the help of the following

lemma

:

6-63 A conic is determined when three points on it and the tangents at

two of these are given.

Let P, Qy R be the given points, PD and QD the given tangents, and
Cl the harmonic conjugate of C = PQ • RD wo P and Q, as in Fig. 6-5b.

Consider the definite correlation that transforms the four points

Py Qy Ry D mto tho four lines PDy QDy RCu PQ and consequently trans-

forms PQ into Dy RD into Ci, and C into CiD. This induces in PQ a
projectivity PQC x PQCi. Since H(PQ, CCi), this is the involution

PQCCi X PQCiC; hence the correlation transforms Ci into CD, and
is a polarity (by 5*62 applied to triangle DCCi). Since the polars of

P, Q, R are PD, QD, RCi, the polarity determines a conic having the
desired properties.

6'64 Steiner’s Construction: Let variable lines x and y pass through
fixed points P and Q in such a way that x ~ y hut not x x yi then the

locus of X ' y is a conic through P and Q.

Proof: Since the projectivity x y is not a perspectivity, the line

d = PQ does not correspond to itself. Hence there exist lines p and q
such that the projectivity relates p to d, and d to q. By 6-53 we can
•find a conic touching p at P, g at Q and passing through any other
particular position Xi • yi of the variable point x • y. By 6-52 the conic
determines a projectivity between pencils through P and Q; and this

must coincide with the given projectivity x x ?y» since it relates the
three lines aji, p, d through P to the three lines yi, d, q through Q.
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6'65 Corollary: If a projectivity between lines through P and Q has
the ejfect xpd — ydq, where d is PQ, then p and q are the tangents at P
and Q to the locus of x y.

6*66 A unique conic can he drawn through five given points^ provided

that no three of the points are collinear.

Proof: The two points P, Q and three positions oi x - y determine
a projectivity X 1X2X3 — 2/12/22/3* which yields a conic through the

five points (by 6*54). Conversely, if a point on any conic through
the five points is joined to P and Q by lines x and ?/> we must have
XX1X2X3 -x 2/2/12/22/3 (by 6-5^), hence the conic is unique.

(Lemma 6-53 may be regarded as the special case that arises when
two pairs of the five given points coincide.)

The duals of 6-51 and 6*54 arc sufficiently important to be stated

explicitly:

6*67 If a triangle is circumscribed about a conic, any point conjugate

to one vertex is joined to the other two vertices by conjugate lines.

6*68 Let- points X and V vary on fixed lines p and q in such a way
that X X Y hut not X x then the envelope of the line XY is a conic

touching p and q. (This was proved by Chasles in 1828.)

It follows from 6*5.3 that infinitely many conics can be drawn to

touch two fixed lines at two fixed points. Such conics are said to have
double contact (with one another).

6*69 Of the conics that touch two given lines at given points, those

which meet a third line (not through either of the points) do so in pairs of

an involution.

Proof: Let such a conic touch AB at P, AC at Q and meet BC in

R and 8, as in Fig. 6*5c. Let the polar of the point M = PQ • BC meet
Pq InL, and BC in N. Then by 6*41 we have Yi(RB, MN), H(Pf?, ML),
and consequently II(/if\ MN). Hence RB is a pair of the hyperbolic

involution (MM){BC), whose invariant points are M and N.
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EXERCISES

1. Dualize 6*5£ and 6‘53.

2. If variable points X and Y on fixed lines p and q are conjugate for a given

polarity, while the point p • g is not self-conjugate, prove that the line XY
envelops a conic.*

3. Show that the four points P, Q, R, S of 6-46 lie on a conic through p • s

and g • r-t

4. Let A and P be a pair of conjugate points wo a conic, and let PQ be a

secant conjugate to AB. Prove that AQ and BP meet on the conic. (Hint: BP
meets the conic again in the point R of Sec. 6-4, Exercise 1.)

5. Consider a variable conic inscribed in a given quadrilateral. Show that

the line joining its points of contact with two sides of the quadrilateral passes

through a fixed point. Identify this point. $

6. Measure off points Xo, Xi, . . . , Xg at equal intervals along a line, and
Yq^Yu . . . , Ffi similarly along another line through Xb= Yq. The joins X„Yn
visibly envelop a conic, in accordance with 6-58. (Of course, this method of

setting up a projectivity is not playing the game. We shall have to wait till

Chap. 8 to see why it is valid, and why the conic is a parabola.)

6*6 Construction for the Conic through Five Given Points. The
following construction was given by Braikenridge in 1733, but his pri-

ority was contested by Maclaurin in a rather disagreeable controversy

:

6*61 If the sides of a variable triangle pass through three fixed non-

collinear points, while ttvo vertices run along fixed lines, the third vertex

will trace a conic through two of the given points.

Proof: Let LMC' be the variable triangle whose sides x — MC',

y = LC', z = LM pass through fixed points A, B, N, while the vertices

L and M run along fixed lines CB' and CA', as in Fig. 6-6a. Then

CA' CB'
^ ^ ^ T y

The projectivity x -x y could be a perspectivity only if N lay on AB.
By 6-53 the locus of 0' = a: * 2/ is a conic through A and B,

This conic passes also through A' (on NB), B' (on NA), and C. For
when 3 coincides with NB, y does the same, while M and C' coincide

with A^. Similarly, when z coincides with NA, C' coincides with B'.

Finally, when z coincides with NC, the points L, M, C' all coincide with
C.

* Chasles (Ref. 4, pp. 10, 137).

t Chasles (Ref. 4, p. 138).

X Graustein (Ref. 14, p. 325).
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In other words, given five points By C, A', B' of which no three

are collinear, we may construct any number of positions of a sixth

point C' on the conic ABCA’B' in the following manner: Through the

point N = AB' • BA' draw an arbitrary line 2 , meeting CB' in X, and

CA' in M. Then C' = AM ' BL is another point on the conic.

By 6-55 the tangent at A (Fig. (I-Ga) is the position taken by x when

7j coincides with BA, so that X is AB • (*B'y as in Fig. 6 (>.n. Ht'nce:

6*62 The tangent at A to the conic ABiJA'B' is the line AM where

M = 6V1' • {AB' • BA'){AB • CB').

EXERCItiEB

1. Dualize C GI, and declnco a construction for any number of tangents to

the conie determined by five given lines, no three concurrent (sec Fig. 6-Cc).

2. Dualize G-62 to obtain a construction for the point of contact of any one

of five given tangents (see Fig. G-Cn).

3. Observe that Fig. 4-8a is the same as Fig. G*Ga if we name tlic points of the

former as follows:
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A — a • b, B = a' ‘ b', C ~ c - c'. A' — a • a\ = b • b', C' — x • x'

L — s ' x'f M = r ' X, iV = a' • 6

4. Prove that, if the three pairs of opposite sides of a hexagon meet in three

collinear points, then the six vertices lie on a conic. (Hint: Consider the hexagon

AB'CA'BC' of Fig. 6-6a.) Dually, if the three diagonals of a hexagon are con-

current, the six sides touch a conic.

5. Given a pair of Desargues triangles, show that the six points in which the

sides of one triangle meet the noncorresponding sides of the other lie on a

conic. Dually, the six lines joining the vertices of one triangle to the noncorre-

sponding vertices of the other are tangents of a conic.

6*7 Two Triangles Inscribed in a Conic.* The following results

are interesting in themselves, besides illustrating the use of Steiner’s

construction.

P

Fig. 6-7b

6-71 If two triangles are self-'polar for a given 'polarity, their six

vertices lie on a conic and their six sides touch another conic.

Proof: The given self-polar triangles PQR and STU (loterniinc

further points and lines

V = p ‘ t, W = p u, v = PT, w — PU, X ==^S, y =

as in Fig. 6-7a. With the help of 2*71, we find

rqvw 77 RQVW — QRWV xyut

Therefore, by 6-54, the four points Q, R, T, U lie on a conic through
P and S. The last part of the theorem follows by duality (or may bo

proved similarly, using 6-58).

6*72 Any two triangles inscribed in a conic are self-polar for some
polarity.

* von Staudt (Ref. 40, pp. 174-175, §§299, 300).
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Proof: Let PQR and STU he the two triangles. Consider the polarity

(PQR)(Ss), where s is TU. Let the polar of T meet s in U', as in

Fig. 6-7b. Then PQR and STU' are two self-polar triangles. By 6-71,

U' lies on the conic PQRS T. (It also lies on s.) But so does U. Hence
U' coincides with U.

6*73 Desargues’ Involution Theorem: Of the co7iics that can he

drawn through the vertices of a given quadrangle^ those which meet a given

line (not through a vertex) do so in pairs of the quadrangular involution.

Proof: By 6’72 the points T and U in which any conic through

P, Q, R, S meets the given line s are a pair of the involution of conju-

gate points on s for the polarity (PQR)(Ss). Since PS meets 5 in a

point conjugate to p - Sy the pairs of opposite sides of the quadrangle

meet s in pairs of this same involution (cf. 6-59).

Conversely, any two points on s that are paired in the quadrangular

involution lie on a conic through P, Q, R, S, provided that we include

as degenerate conics the line pairs such as PS and QR. This idea of

regarding two lines as forming a degenerate conic enables us to delete

the clause hut not x ^ y from 6-54, which may now be expressed as

follows : A. conic is the locus of a point that is joined to two fixed points

hy corresponding lines of two projectively related peiicnht. For although

when X ^ y the locus of x * y is strictly only one line, we must admit

that any point collinear with A and B shares with the points of that

locus the property of being joined to A and B by corresponding lines

of the related pencils.

EXBRCISES
1. Observe how 0'71 and (>-7i'2 serv^e to establish the following theorem, due

to Steiner: Ff two triangles are inscribed in a conic, their six sides touch a conic

(and conversely )

.

2. Prove that a given liiie tonerhes at most two of the conics through P, Q,

R, S.

3. The formal self-duality of the Desargties configuration (Fig. 2-2a and b)

continues to hohl if we interchange the names of R and R', Q and Q', II andP'.

Prove that this duality cannot he n^alized as a polarity (cf. 5’71) unless these

six points lie on a conic (as in Se<‘. (rt, FiXereis<‘ .5),

6*8 Pencils of Conics.* Wc saw in See. 5 -8 that the polarities

(ABC)(Pp), where p turns about a, fixed i)oint P', hav^e the property

that the polars of an arbitrary })oint X all pass through a corresponding

point X'

.

In other words, the ja'iicil of polarit ies (U‘terinines a corre-

* This section inuy be oinittocl on first reading or in a short conrst;.
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spondence X X' between points that are simultaneously conjugate

for all the polarities. Now, if X runs along a fixed line o, how does X'
behave? The answer will emerge while we are proving the following

theorem

:

6*81 The locus of 'poles of a fixed line 'Wo a pencil of polarities is a

conic or a line.

Proof: By the dual of 5-81 the locus is a line if the pencil is a “self-

dual system”; but we are more interested in the general case. Let 0i

and O 2 be the poles of the given line o wo two particular polarities in

the pencil (see Tig. 6-8a). When the point X varies on o, its two polars

Fig. 6-8a Fig. 6-8b

Xi = OiX' and Xs = O2X' rotate about the fixed points Oi and and
we have

Xi X ~ X2

Three particular positions for X are where o cuts the sides of the com-
mon self-polar triangle ABC of the polarities; then the conjugate

points X' are the vertices of that triangle, in turn. Hence the locus of

X' (while X runs along o) is the conic ABCO 1O2 , which is nondegener-

ate provided that no three of these five points are coll inear. Each posi-

tion of X' depends only on X and the pencil, not on the two selected

polarities. Hence any other polarity in the pencil will give a pole 0 on

this same conic. In other words, the conic is both the locus of A"'

(when X varies on o) and the locus of the pole 0 (when the polarity

varies in the pencil).

The possible cases of degeneracy remain to be investigated. We shall

find that, when the conic degenerates into two lines, the loci of X' and
0 no longer coincide but X' runs along one line and 0 along the other.

One possibility is that 0i might lie on a side of triangle ABC, say a.

This can happen only if the given line 0 passes through A, in which
case not only 0i but also 0% lies on a. The position A for X makes .ti
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and Xi coincide with a; therefore Xi ^ x-2 , and the locus of X' is a line

through A. But the locus of 0 is the line a.

On the other hand, if 0i and O 2 are collinear with a vertex, say A,

(but do not lie on a side), we have AOi = AO 2 , so that the point

a o has the same polar for both polarities. This is the case of a self-

dual system of polarities. The locus of X' is the side a, while that of 0
is a certain line through A. Here we have assumed that o does not pass

through the special vertex A ; but if it does, its pole 0 is the same for

all the polarities and X' constantly coincides with 0.

6*82 Ever}! pencil of polarities determines a pencil of conics: one

conic throuijh each point of (jeneral position.

Proof: ("oiisidcr once more Iho polarities (ABC){Pp), with p through

the fixed |)<)int P'

.

Siticc one ])ossible ])osition for p is P'P, one of the

|)olaritics (h^ltTinines a conic that touches PP^ at P. In fact, every

point -Y (not on a side of triangle ABC) lies on such a conic (touching

.YA"' at Y).

In particular, a self-dual system of polarities (see 5-S2) determines a

self-dual system of conics (e.y.. Fig. 6*8b or c).

It riifiy lva])pen that two <’onics of a pencil have a common point.

Then this point is self-conjugate for two, and therefore all, of the

polarities.
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If such a common, point P lies on the side a of the common self-

polar triangle ABC, then all the conics have the same tangent PA at

P and the same tangent QA at Q, the harmonic conjugate of P wo B
and C (see Fig. 6 -Sc). Thus, if two conics of a self-dual system have a

common point, all of them have double contact.

On the other hand, if the common point P does not lie on a side of

triangle ABC, then we can find (as in 2-42) a definite quadrangle

PQR8 having ABC for its diagonal triangle. All four vertices of this

quadrangle are self-conjugate ; for example, Q (being the harmonic

conjugate of P wo the two conjugate points C and Ci of Fig. 2‘4c) is

the second invariant point of the involution of conjugate points on

CP. Hence in this case the pencil consists of all the conics circumscribed,

to a quadrangle (as in 6’73), and we call it a quadrangular pencil of

conics.

The “double-contact” system may be regarded as a limiting case of this

quadrangular pencil, when the points P, Q, R, S approach coincidence in pairs,

PS and QR, in such a way that the lines PS and QR have definite limiting

positions p and q. For then the conics will all touch p at P, and q at Q.

As a special case of 6-81, we have the following:

6*83 Given a quadrangular pencil of conics and a line not through a

diagonal point of the quadrangle, the locus of poles of the line is a conic.

This conic, which is not only the locus of poles 0 of the given line o

but also the locus of the point X', which is conjugate to a variable

point X on 0 wo all the conics, is called the nine-point conic of the quad-

rangle wo the line o. For it contains nine special points: the three

diagonal points A, B, C and one further point on each side; e.g., on

PQ the harmonic conjugate of o • PQ wo P and Q. These nine points

are the positions taken by X' when X lies, in turn, on the sides of the

diagonal triangle and of the quadrangle itself.

Since conics are ultimately defined in terms of incidence, any col-

lineation will transform a conic into a conic. In particular, a homology
whose center and axis are the A and a of 5-82 leaves the self-dual sys-

tem invariant: if it is a harmonic homology, it leaves each conic

invariant, but otherwise it transforms each conic into another. If the

common involution is elliptic, A is interior to all the conics and each

line through A meets them all. Hence in this case, by 5-21, any two
conics of the system are related by such a homology. But if the involu-

tion is hyperbolic, so that A is outside all the conics, then any two lines

through A, separated by p and q, will each be a secant for some of the
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conics and an exterior line for the rest. Thus a system of conics having

double contact falls into two subsystems, such that any two conics of

the same subsystem are related by a homology with center A and axis

a. (These subsystems arc represented by ellipses and hyperbolas in

Fig. 6-8c, but of course that distinction belongs to affine geometry; in

projective geometry they are exactly alike.) On the other hand, each

line through P meets all the conics (of both subsystems); hence any

two conics of the whole system are related by a homology with center

P and axis q (and likewise by one with center Q and axis p). In either

case:

6*84 Any two conics of a self-dual system are related by a homology.

EXERCISES
1. Theorem 6-82 shows that every pencil of polarities includes infinitely

many hyperbolic polarities. Prove that tlie pencil consists entirely of hyper-

bolic polarities if a common pair of conjugate points (P and P') both lie in

the same one of the four regions determined by the common self-polar triangle

ABC’, but infinitely many elliptic polarities occur as well if such conjugate

points lie in difi’erent regions. (In the case of a self-dual system the same dis-

tinction depends on w'hether the common involution is hyperbolic or elliptic.)

2. In the presence of a general pencil of polarities any line o determines a

conic (tlie locus of jjoles of o; see C-81). Show that a pencil of lines o determines

a pencil of sucli c‘<micK.

3. If two qua<lrangh‘S have tlie same <liagonal points, prove that either

they share a pair of opposite si<h's or their eight vertices lie on a conic. {Hint:

Consider the <‘onic <let(‘rniitK'<l by one f|uadranglo and one vertex of the other.)

4. Using ()"4() aiul the dual of Kx<'reis<‘ 3, prove that, if two conics intersect

in four points, the eight tangenls at these points either pass by fours through

two points or touch a conic {Salmon'« contc').

5. For the nine-point <‘otiic show that three pairs of the nine points {e.g.,

the harmonie conjiigale of o l^Q. on l*Q and that of O'RS on RS') are joined

by lines conjugate to o.



CHAPTER 7

FROJECTIVITIES ON A CONIC

This chapter deals with those properties of a conic which may be

most readily derived by means of the notion that the points on the

conic form a “range,” resembling in many ways the points on a line.

Pascars theorem is the most famous instance; but its original proof

must have been diifferent. The idea of projectivity on a conic is due to

Bellavitis (1838), We shall see that the construction for such a pro-

jectivity is simpler than for a projectivity on a line. In fact, some
authors, such as Holgate, rearrange the material so as to treat ranges

on a conic before ranges on a line. Involutions are especially easy to

deal with, for the joins of pairs of corresponding points are concurrent,

as we shall see in Sec. 7-5.

7*1 Generalized Perspectivity. Steiner’s theorem (our 6-52) en-

ables us to regard the points on a conic as a range that can be related

to an ordinary range or pencil or to another range on the same (or

another) conic. Thus, if variable points R and R' on a conic are joined

to a fixed point on the same conic by lines x and x\ where x x
then we are justified in writing

R-R'
since the fixed point P could just as well be replaced by another such

point Q (on the same conic), as in Fig. 7Ta.
If X meets a fixed line (not through P) in B, we write

P
R "k R

and call this relation a generalized perspectivity. (Always remember that

P has to lie on the conic.) When R coincides with P, x is the tangent

there (by 6-55) and B is where this tangent meets the fixed line.

This notion makes it easy to prove the following theorem

:

7*11 If the six vertices of two triangles lie on a conicy the six sides

touch a conic {and conversely).

80
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Proof: The giyen inscribed triangles PQR and STU determine
further points

V = QR SU, W^QR ST, X = PR TU, Y = PQ TU
(see Fig. 6-7a, where the points X and Y should be marked), and we
have

S P
RQVW X RQUT ^ XYUT

Since P and S are distinct, the projectivity RQVW — XYUT is not a
perspectivity. Therefore, by 6*58, the lines RX, QY, VU, WT are
tangents of a conic that also touches RQ and UT. (The converse is the
dual theorem.) (For another proof, see Sec. 6-7, Exercise 1.)

Q o

As another application of this method, here is an alternative proof*
of Desargues* involution theorem (our 6-73). Let the given line meet
the sides QR, PS, RP, QS of tlie quadrangle, and one of the conics, in

the points A, A', B, B', A" and A"', as in Fig. 71 b. Then

ABXX' ^ QPXX' ^ B'A'XX'

Hence, by 4-67 and 4-71, A’'
A"'

is a pair of the quadrangular involution

(AA')(BB').

This ])r<)of has the atlvantage of remaining valid when P coincides

with /S (or Q with H) so that the co!iics form a “contact” pencil instead

of a (juadrangular pencil. It even remains valid when P = S and

Q = R, so that the conics form a “double-contact” system, as in 6-50.

In each case, those conics of the pencil which meet a line of general

position do so in pairs of an involution.

EXERCISE
Establish the relation PQRS QPSR for any four points on a conic. {Hint:

Use ^2-71.)

* von Staudt (Ref. 40, p. 176, §301).
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7*2 Pascal and Brianchon. At the age of sixteen Pascal wrote an
extensive treatise on conics, which, unhappily, is now lost. Leibniz,

who saw it, says that it included the famous theorem of the hexa-

gramma mysticum, which is the converse of Braikenridge’s construction

(our 6-61). We do not know how Pascal proved it; but various proofs

have been devised since his time.

7*21 Pascal’s Theorem: If a hexagon is inscribed in a conic, the

three pairs of opposite sides meet in three collinear points.

Proof:* Let AB'CA'BC' be the hexagon, so that the points to be

proved collinear are

L = BC' ‘ CB', M = CA' AC', N = AB' BA'

as in Fig. 7-2a. Using further points./ = A(y BA' and K = BC' • CA',

we have

A C
A'NJB ^ A'B'C'B ^ KLC'B

Thus B is an invariant point of the projectivity A'NJ — KLC', which
M

accordingly is a perspectivity, namely, A'NJ ^ KLC' (since the joins

A'K and JC' pass throujgh M). Hence NL passes throiigli M.

Note the close analogy with Pappus’s theorem (our 4-81), which is

Pascal’s theorem as applied to a degenerate conic. (Some German
authors call Pappus’s theorem “Pascal’s theorem.”) Anyone who
dislikes the generalized perspectivity may deduce

A'NJB - KLC'B

from the observation that the lines AA', AB', AC', A B arc projectively

related to the respective lines CA', CB', (A", CB.
* von Staudt (Ref. 40, p. 143, §257); Enriques (Ref. 11, p. 225).
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The dual of Pascal’s theorem was discovered by Brianchon, nearly
170 years later.

7*22 Brianchon’s Theorem: If a hexagon is circumscribed about a
conic, the three diagonals are concurrent (see Fig. 7*2b).

The following is typical of many applications of Pascal’s theorem

:

7-23 IfA,B,C,A',B',C' are six points on a conic, while the tangents

at these points are a, b, c, a', b', & , then the three lines {a - a'){BC • B'C'),

{b ’ h'){CA • C'A'), (c * c')(AB • A'B') are concurrent.

Proof: Let the various points be named

Ai = a a', Bi = h ' b', Ci = c c'

L = BC' - CB', M = CA'- AC', N = AB' • BA'
P = BC’ B'C', Q = CA‘ C'A', R = AB • A'B'

as in Fig. 7-2c. From the Pascal hexagon CABC'A'B', the throe points

L, Q, R are collincar. By 6-43, L lies on the polar of BB' • CC', which is

BiCi. Thus L lies on both BiCt and QR. Similarly M lies on (\Ai and
RP, N on AiBi and PQ. But L, M, N are collinear (from the Pascal

hexagon AB'CA'BC'). Hence AiBiCi and PQR arc Desargues triangles.

KXKHCIBR.S
1. Verify that A'RSIiXX' is a Brianchon hexagon in Fig. 4-2a.

2. Show how the pentagon Ali'CA'Ii of (vOS may ho regarded as a limiting

ease of the Pascal hexagon when C' eoineitles with A.

3. Show how the quadrangle PQl^H of (>*4G may be regarded as a limiting

case of the J^iscral hexagon when two vertices (toinei<le at Q and two others at

R., so that the “hexagon” is /*QQRRR,. Similarly, the (juadrilateral prqft may
he regarded as a limiting Brianchon hexagon pprqqs.

4. Let a conic he define<l by four points and the tangent at one of them.
Construct the tangent at am»ther one of the four jmints.

5. Show how tlu^ triangle PQR of See. (rG, Exercise 3, may be regarded as a
Pascal hexagon PPQQRR or as a Brianchon hexagon ppqqrr.
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6: Let ABC be a triangle inscribed in a conic. Choosing any points Ay, Bi,

Cl on the tangent^ at A, B, C, let the sides of triangle ABC meet the correspond-

ing sides of triangle AiBiCi in points P, Q, R, as in Fig. 7-2d. I*rove that the

three lines AiP, BiQ, CiR are concurrent.*

7*3 Construction for a Projectivity on a Conic, f In virtue of

Steiner’s theorem the whole theory of projectivities on a line can be

carried over to projectivities on a conic; e.g.^ such a projectivity may
be elliptic (having no invariant point), parabolic (having one invariant

point), or hyperbolic (having two invariant points), and in the last case

it is either direct or opposite (according as it preserves or reverses the

sense around the conic). The construction for the transform of a given

point is actually easier than in Sec. 4-4, for now we can make use of an

auxiliary line called the axis of the projectivity.

The axis of the projectivity ABC — A'B'C' on a conic is the Pascal

line of the hexagon AB'CA'BC'f namely, the line o determined by any
two of the three points BC' • CB', CA' • AC\ AB' • BA'

.

7*31 Given seven points Ay By (7, X, A'y B'y C' on a conicy we can
locate the point X' such that ABCX A'B'CX' as the second intersec-

tion of the conic with the line AFy where F is XA'
o.

Proof: If AA' meets the axis o in G (Fig. 7*3a), we have

A
ABCX ^ GNMF ^ A'B'C'X'

* This theorem, due to Kenneth Leisenring (a gradu.ate student at the University
of Michigan), was put into the more manageable form 7-23 by Alex Rosenberg.

t Enriques (Ref. 11, p. 251).
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Thus the “cross joins’* of any two pairs of corresponding points
meet on the axis.

The general projectivity between ranges on two distinct lines (Fig. 4 -Sc)
may be regarded as a degenerate case, the Pascal line of the conic becoming
the Pappus line of the line pair.

7*32 A projectivity on a conic is deiermined when its axis and one
pair of corresponding points are given.

A' A
Proof: Given the axis and AA', we have X F ^ X'

.

In other

words, for any X on the conic, there is a unique X' such that AX' XA'
lies on the axis.

The only way in which .V' can coincide with X is by X lying on the

axis. Hence:

7*33 The invariant points (if any) of a projectivity on a conic are the

comnum points of the axis and the conic.

7*34 The projectivity is elliptio, parabolic, or hyperbolic, according as

its axis is an exterior line, a tangent, or a secant.

A secant decomposes the conic into two arcs. Hence, by 4-45i, a
hyperbolic ])rojcctivity is direct or opposite according as two corre-

sponding points lie l>otli on the same arc or one on each. The four types

of projectivity arc illustrated in Fig. 7-3ji.

7*36 Any projectivity on a conic determines a collineation of the

whole plane.

Proof: By C-53 a iini<iuc conic can be drawn to touch two given

lines a and h at two given points A and B and to pass through another
given point C. Consi<ler the (piadranglc ABi'D, where D is a • h, anti

another such quadrangle A'B'(''J)' (determining the same conic).

These two quadrangles arc related by a unique collineation (see 5-12),

which preserves the conic and induces the projectivity ABC A'B'C
on it.
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EXERCISE

Show that an involution on a conic determines a harmonic homology of the

whole plane.

7*4 Construction for the Invariant Points of a Given Hyperbolic

Projectivity. Given a hyperbolic projectivity on a conic, we can

easily locate its invariant points by drawing its axis (see 7-33). This

suggests the following construction (due to Steiner) for the invariant

points of a given hyperbolic projectivity ABC — A'B'C' on a line:

Draw any conic (in practice, a circle*), and project the given points

from any point P on the conic into Ai, J5i, Ci, A'l, B[, C{ on the conic,

as in Fig. 7*4a. Draw the axis {AxB'^ • BxA'i){BxCx • C'l/ii), to meet the

conic in il/i and Nx- Project these points from P, back onto the original

line, and we obtain the desired invariant points M and N.
P P

Proof: MNABC ^ MxNxAiBxCx a MxNxA'xB'xC'x ^ MNA'B'C'

EXERCISE
What will happen if we try to carry out this construction when the given

projectivity is not hyperbolic?

7*6 Involution on a Conic.f The involution {AA'){BB') may
be regarded as the special case of the projectivity — A'B'C' that

arises when C = B' and C' = B, as in Fig. 7*5a. The axis

0 = {AB' • BA')(AC' * CA') = (AB' • BA')(AB • A'B')

* The familiar process of reciprocation wo a circle is an instance of a polarity; therefore

a circle is a conic. We shall return to this subject in Sec. 9-2.

t Cremona (Ref. 8, p. 160). For an alternative treatment see Enriques (Ref. 11,

pp. 266-259) or Veblen and Young (Ref. 42, p. 222).
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is one side of the diagonal triangle of the quadrangle AA'BB', and its

pole is the opposite vertex 0 = AA' • BB' of that triangle. Hence:
7*61 The pairs of an involution of points on a conic are joined by

concurrent lines; i.e., they are cut out by a pencil of secants.

Conversely, any pencil of secants determines an involution, namely,
{AA'){BB'), where AA' and BB' are any two of the secants.
The axis, being the polar of 0, contains the point of intersection of

the tangents at any two corresponding points. This could also be
inferred by considerations of continuity; for the tangents at A and A'

are the limiting positions of the cross joins of the pairs AA' and B'B
when B api)roachos A.

The point 0 = yiA' • BB' is called the center of the involution

{A A'){BB')

.

Since it is the pole of the axis, 7-34 implies the following:

7*62 The center O of an invohdion is Interior or exterior according as
the involution is elliptic or hyperboHcy and in the latter case the invariant

points are the points of contact of the two tangents that can be drawn
through 0.

7*53 Corollary: Four points on a conic satisfy AA' //BB' if and only

if the point AA' • BB' is interior.

By 4-68 wo now have*:

7-64 1'wo secants A A' and MN are conjugate lines if and only if

Jl(AA', MN).

The following theorem will be used in Sec. 9-8, where we consider
the axes of a conic in Euclidean geometry:

7-66 7'wo involutions, one or both elliptic, on the same line, always
have a comm,on pair of corresponding points.
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Proof: Transfer the two involutions to a conic, by the method of

Sec. 7-4, and let their centers be Oi and 0,-, as in Fig. 7’5b. Since at

least one of these points is interior, their join Of)j is a secant, meeting

the conic in M and iV, say. Then JfiV is a common pair of the two
involutions on the conic (cf. Sec. 4*6, Exercise 4).

Incidentally, this shows that the product of the two involutions is

hyperbolic, having M and N for invariant points. More generally, the

product of any two involutions on a conic has for axis the join of the

two centers. For if the involutions transform X into and X-^y

respectively, as in Fig. 7-5c, their product

XX^X^^ - X^^X^X

has axis {X^X • X^^X'^){XX-^ • X^X^^) = OiOj.

EXERCISES

1. What happens to the involution with center 0 when the conic degenerates
into a line pair? Where then is the axis of the involution?

2. Use 7-53 to obtain a quick answer to Exercise 3 of Sec. 4-7.

S. Given five points A, A', B, B', C, no three collinear, devise a linear con-

struction for the point C' on the conic AA'BB'C that is paired with C in the

involution {AA')(BB').

4. Adapt the method of Sec. 7*4 so as to construct the points M and N of

3*64. These are, of course, the invariant points of the hyperbolic involution
(AB){CD).

5. Show that each pair of an elliptic involution are harmonic conjugates
wo one other pair.*

* Holgate (Ref. 21, p. 213).
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6. Prove tbicit two involutions on & conic commute if a,ncl only if their cen-
ters are conjugate.*

7. Let AAiA'BBiB' be a hexagon inscribed in a conic. Show how Pascal’s

theorem leads to a new proof of our theorem 4-68.

8. By 4*69 a given projectivity on a conic may be expressed as the product
of two involutions. Let Oi and O,- be the two centers. Show that Oi may be any
point on the axis of the given projectivity and that Oi is related to 0, by a

projectivity (on the axis) of the same type as the given projectivity (on the
conic).

7*6 A Generalization of Steiner’s Construction. We have seen
that the joins of corresponding points of an involution on a conic are
concurrent. It is natural to ask what happens in the case of a projectiv-

ity that is not an involution.

7*61 The joins of corresponding points of two projectively related

ranges on a conic c?ivelop a conic {proinded that the projectimty is not an
involution)

.

Proof:\ Let A be a fixed noninvariant point on the conic and X a
variable point on the conic, so that AA'X x A'A"X\ as in Fig. 7*6a.

Then the axis of the projectivity is PQ, where

P = AX' - XA', Q = A'X' • XA"

I.et .V.V' meet the two fixed lines AA' and A'A" in 0 and O'. From the

(juadrangle AA'XX', O and P are conjugate points. From the quad-
rangle A'A"X^X'y O' and Q are conjugate points. As A' and X' vary on
the conic, P and Q vary on the axis, O varies on AA', and 0' on A'A";

* Veblen Jind Young (R(d‘. 4‘ii, p. 2i27).

t Due to James Jenkins while he was an undergraduate at the University of Toronto.

For the complex version of this theorem .see Baker (Ref. 2a, p. 52) or Coolidge (Ref. 5,

p. 111). For another “real” proof see the American Mathematical Monthly, vol. 53,

pp. 538-630, 1946.
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thus
A A'

0-^P^X'^Q — 0'

But 0 and 0' cannot coincide (as A' is not an invariant point of the

projectivity on the conic). Hence, by 6*58, the line 00' (or XX')
envelops a conic.

EXERCISES

1. Two sides of a variable triangle inscribed in a conic pass through fixed

nonconjugate points. Prove that the third side envelops a conic (cf. Sec. 6-4,

Exercise 3).

2. Those tangents to one conic which cut another conic determine on the

latter an ordered correspondence. Show that this is not, in general, a projec-

tivity. (Hint: Five arbitrary pairs of points on the conic may be related by such

a correspondence; but of course no more than three arbitrary pairs can be

related by a projectivity.)

Fig. 7-7a Fig. 7-7b

7*7 Trilinear Polarity. We proceed to show how a triangle induces
a correspondence between points not on its sides and lines not through
its vertices. Although this is called a “trilinear polarity,” it is not really

a polarity at all; for, as we shall see, the “poles” of concurrent lines

are not collinear points.

Given a triangle ABC and a point X not on any side, construct the
six points

Xa = XA- BC,
A^ = XiXo • BC,

Xb = XB- CA,
= X,Xa • CA,

Xc ^ XC AB
= XaXb • AB
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as in Fig. 7*7a. By Desargues’ theorem for triangles ABC and XaXbXc^

the three points Axt Bx, C* lie on a line x. This is called the trilinear

polar of X (wo ABC).
Since Ax, Bx, Cx are the harmonic conjugates of Xa, Xh, Xe on the

respective sides,* we can easily reconstruct X, the trilinear pole of a

given line x (not through any vertex).

Carrying over these definitions to the forbidden positions, we
should say that the trilinear polar of a point on a side is that side

itself, while the trilinear pole of a line through a vertex is that vertex

itself. But the trilinear polar of a vertex and the trilinear pole of a

side are indeterminate.

7*71 The trilinear poles of a pencil of lines are the points of a conic

circumscribing the triangle.

Proof: Let rc be a variable line through a fixed point O, not on a side

of the given triangle ABC, and X its trilinear pole, as in Fig. 7-7b.

From the involutions {CC)(AA) and (AA)(BB), we have

0
Bx Cx /\ c

and hence the locus of X = BXf, • CXr. is a conic through B, C, and

similarly through A. (This is called the polar conic of 0 wo the triangle.)

If 0, instead of being a point of general position, lies on a side, say

on BG, then we have Xb ^ conic degenerates into that side

and a line through the opposite vertex. Finally, if 0 is taken at a vertex,

the locus consists of the two sides through that vertex.

EXEHCISEi^

1. Show that the line A \li\C\ of Fig. ^^-40 is the trilinear polar of the point S.

2. Prove that the dual of the above construction for x (given X) provides a

construction for X (given r). Clint: Show that the three lines AX, BBg, CCx

are concurrent.)

3. Dualize 7-71.

4. If the trilinear polars of the vertices of a triangle (not A BC) are concur-

rent, prove that tlie trilinear poles of the sides are collinear.

5. Given a conic and an inscribed (or circumscribe<l) triangle, show that

there is just one point who.se polar wo the conic coincide.s with its polar wo the

triangle. {Hint: Use Sec. 0-3, Excrci.se 3.)

6. Given an elliptic polarity and a .self-polar triangle, show that there are

just four points whose polars coincide with tlieir trilinear polars. (//i/i^.* Apply

Sec. 7-5, Exercn.se 5, to the involutions of conjugate points on two sides of the

triangle.)

* Poncelct (Ilof. 30, p. 34) u.sed this property to define thcf trilinear polar.



CHAPTER 8

AFFINE GEOMETRY

Projective geometry, in marked contrast to ordinary Euclidean
geometry, is not at all concerned with length or distance; it contains
no criterion for telling whether two segments are congruent.” But
aj6S.ne geometry takes us halfway back to the concept of distance: we
are able to measure lengths along one line or on parallel lines and even
to measure area, but we still cannot compare segments in different

directions.

It is remarkable how many of the concepts and properties ordinarily

considered in Euclidean geometry are still valid in the wider system of

affine geometry. As we saw in Sec. 1*2, such concepts and properties

are just those which are invariant under parallel projection.

Elein treated affine geometry by means of coordinates, viz., oblique

Cartesian coordinates with independent scales of measurement along

the two axes. The details of the synthetic treatment were worked out
by Veblen.

8*1 Parallelism. Affine geometry can be derived from projective

by singling out one line o and calling it the line at infinity, so as to

be able to define parallelism. Any point on o is called a point at infinity,

and two lines are said to be parallel if their intersection is such a point.

Strictly, affine geometry is concerned only with “ordinary” points

and lines (not at infinity); hence we may say that the affine plane is

derived from the projective plane by removing the line o. Thus two
lines are parallel if they have no (ordinary) intersection. The theory
could be built up in terms of ordinary points and lines alone; but we
shall find it easier to make use of o, that is, to develop affine geometry
from the projective point of view. However, all our theorems will be
stated in terms of ordinary points and lines.

It is an immediate consequence of our definition of parallelism that
just one line can be drawn, through a given point, parallel to a given
line (not passing through the point), and that all lines parallel to a
given line are parallel to one another.

Four points are said to form a parallelogram OACB if OA is parallel

to BC and OB to AC.
98
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EXERCISES

1. Let 0AMA' and OBLB' be two parallelograms having their sides at 0
along the same lines (jB on OA, B* on OA'). Prove that the lines AB'^ BA', LM
are concurrent. {Hint: Use 4-31.)

2. Through a point X draw a line AC with A and C on two fixed parallel

lines. Through a fixed point 0 (not on any of these lines) draw OA^ and let the

parallel line through C meet OX in X\ Prove that the position of X' is inde-

pendent of the choice of the transversal AC and that the correspondence

X —> X' is a homology.* {Hint: Figure 5 -23 with A' at infinity.)

8-2 Intermediacy. In Sec. 3-1 we considered a closed line on

which the order of points is cyclic. The removal of a point at infinity

changes this into an open line on which the order of points is serial,

like the order of real numbers. In other words, separation is replaced

by intermediacy: we say that B is between two given points C and D
when AB/fCD, where A is the point at infinity on the line CD. Axioms
3*11 to 3-16 lead to familiar properties of intermediacy:

8*21 For any two distinct points B ami C, there is at least one point

D such that B is between C and, D.

8*22 If B is between C and, D, then B, C, D are distinct.

8*23 Any point between C and D is also between D and C.

8*24 Of any three collincar points, one is between the other two.

8*26 If B is between C and D, while C is between B and, E, then B is

between D and, E (as in Fig. 8*2a).

8'26 Intermediacy is preserved by parallel projection (Fig. 8-2b).

If wc wishcil to build up aflinc geometry as an independent system, instead

t>f deriving it from projective geometry, we should take some of the above

properties (along with certain statements about incidence) as a new set of

axioms. Such a .system is in some re.spects simpler than projective geometry;

for point and intermediacy are the only primitive concepts needed: “line” an<l

“incidence” can be defined in terms of them.

*La Hire, as quoted by Lehiner (Ref. 23, p. IIO).
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In affine geometry, any two points B and C determine a unique

segment JBO, namely, BC/At where A is the point at infinity on the

line BC. This simply consists of all points between B and C. Similarly,

the interior of a triangle ABC is the region ABCfoy in the notation of

Sec. 3 ’8.

Although an ordinary line is open, the line at infinity is still closed.

Thus we cannot say that one of three points at infinity lies between

the other two, but only that two of four points at infinity separate the

other two. It is important to notice that a positive sense of rotation is

determined at all (ordinary) points simultaneously by calling one of

the two senses along o the positive sense.

EXERCISES

1. Deduce from 3-31 that the affine line is decomposed by any one of its

points into two half-lines, or rays. If B lies between C and D, the two rays are

natm-ally denoted by B/C and B/D. (Of course, B/C is the one that does not

contain C.)

2. Develop the affine theory of sense, using a symbol S(BC) 9̂ S(C'jB).

8*3 Congruence.* Two segments QQ' and RR' are said to be

congruent by translation if QQ'R'R is a parallelogram. We then write

QQ' ^ RR'

a R'

Theorem 1-51 with 0 at infinity shows that the two relations QQ' = RR!

and RR' = PP' imply PP' = QQ'.

We naturally extend this notion so

as to allow PP' and QQ' to be col-

linear, as in Fig. 8'3a: we write

PP' = QQ' whenever there is a seg-

ment RR' such that PP'R'R and

QQ'R'R are parallelograms. It fol-

lows from this extended definition

that the relation “congruent by translation” is reflexive {PP'^ PP'),

symmetric (so that PP' = QQ' implies QQ' = PP'), and transitive

(so that PP' = QQ' = RR' implies PP' s RR').

We proceed to show how the relation between congruent segments
on one line may be expressed as a projectivity. In Pig. we con-
structed the parabolic projectivity MMA — MMA' by choosing
points R and S on an arbitrary line through the invariant point M.

* Veblen and Yoimg (Ref. 43, p. 75).
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If M is at infinity, we may take RS toT be the line at infinity, so that

AXXaAa and A'X'XqAq are parallelograms and AX = A'X'. Con-
versely, if AX and A'X' are congruent segments on the same line, we
have parallelograms AXXqAq and A'X'XqAq from which we can
reconstruct the figure for a parabolic projectivity. By 4-72, the relation

MMAX X MMA'X' implies MMAA' x MMXX'; that is,

AX = A'X' implies AA' ^ XX'

Hence

:

8*31 Two segments on the same line are congruent if and only if one

is transformed into the other by a ’parabolic projectivity whose invariant,

point is at infinity; and a variable segment XX' on a fixed line remains

congruent to a fixed segment AA' if and only if X and X' are related by

such a projectivity.

If AA' = A'A"^ we call A' the mid-point of the segment AA". By
4-43, this means that TA{MA'j AA"), where M is the point at infinity

on the line AA". Hence, writing B for A",
8*32 The mid-point of a segment AB is the harmonic conjugate {wo

A and B) of the point at infinity on the line AB.*

EXERCISES
1. Consider what happens to Fig. 2-5a when CPQ is the line at infinity.

Show that the diagonals of a parallelogram have the same mid-point. Deduce
that the congruence PP' — QQ' (on one line or on parallel lines) is equivalent

to the statement tliat PQ' and QP' have the same mid-point.

2, Prove tliat the medians of a triangle are concurrent.* (Hint: See Sec. 7*7.)

8*4 Distance. On a given line AAj, let further points A^, As,

... be taken so that

yiA I — A iA‘2 — A sA s
~ ‘ '

Then we say that the distance yiA,i is n times AAi. Figure 8*4a illus-

trates both the parabolic projectivity

R S
AyiiAa ... M X BB 1 B2 ... M x A 1A 2A 3 . . . M

and the harmonic relations 1 l(Myii, Ayis), lliMAs, AiAs), . . . .

This gives us a rule for iniiltijdying a given distance by any positive

integer. Can we also construct a fraction of a given distance? Not
immediately, hut soon.

* von Stiiudt (llcf. 40, p. 204, §338),
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It is intuitively obvious that the segments A 1A 2, A 2AS, . . - cover the

whole ray Ai/A (or A\M/A)^ so that the point at infinityM is the limit of the

sequence of A’s and may appropriately be called A^- But the rigorous proof of

this fact is postponed till Sec. 10*2.

S

Suppose we have

OAx — AxA.2 A 2A 2 = * •

on one line and

OBx = B 1B 2 = -B2B3 = • • •

on another, as in Fig. 8-4b. Then, because the successive .I’s and B'h
were constructed by taking harmonic conjugates, we have

^ OBxBnB^

By 4*23, this projectivity is a perspectivity whose center lies on the
line at infinity AJB„, Hence A.nBn is parallel to A\Bx, and the lines

AnBn for various re’s are parallel to one another.
Now, to divide a given segment OAi into re equal parts, draw any

other line through 0, and take on it points Bu B., . . . , B^ so that

OB I = BxBz s . . . ^Bn-xBn
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Join A\JBny and draw parallel lines through the other to meet OAi
in points Ax/ny A^/ny ...» A^n—!)/«.> as in Fig. 8*4c. Then

OAi/n = Ai/nA^/n = * • • ^A(n—l)/nAi

and each of these segments is 1/n of OAi.
In this manner we can construct a segment OA^n.n for any given

fraction m/n, and it is not difficult to see that the order of such points
A,n/n agrees with the order of the rational numbers m/n. (We naturally
use Ao as an alternative symbol for O.) Considerations of continuity*
then enable us to define yl* for any positive number x (whether rational
or not).

Negative numbers may be included by defining as the harmonic
conjugate of Ax wo Ao and Ag^, so that A^xAq = AqAxI and then we
write AoA-x = ~AoAx, or AoAx + AoA^x = 0. By 4-63, Ax and A-x
are a typical pair of the involution (^4o/lo)(^loo^«,).

Instead of saying that the distance AoAx is x times AqAu we may
A 4

say that the ratio — r- is ccjual to the real number x. The above re-
-.'1 QJ-I 1

marks provide a definition for the ratio of any two segments on one
line or on parallel lines. f But it is important to realize that the ratio
of two segments in any other relative position is essentially indeter-

minate. If fh I B is a triangle, the symbol has no numerical value
UjtL

(in affine geometry): we cannot say whether OA or OB is “longer.”
What we can say about sc'gments on intersecting lines is as follows:

8-41 // .1 ^
ift on OA and B^ on OB, with A'B' 'parallel to AB, then

OA' OB',
,

..OA' OB'
(hi ^ Ob’ * y 0 4

==
'01} ’ parallel to AB.

W(“ arc now ready to reconcile Desargues’ treatment of involutions
with von Stand t’s. We have already considered tho trivial case when
the involution has an invariant point at infinity. In any other case the
point at infinity is paired with an ordinary point (7, called the center

of tlie in\n)lnlion (though it has no connection with the 0 of 7-52). J

=" The <U-lnits !irc iK'f'jiuse for lliis piirj)().se Axiom 3-51 is quite unsuitable.

The rcluviiiit Ircatmont of <-oiilinuily, l>:iso<l on the i<lcus of Weierstrass and Cantor,

will he found in Chap. 10.

t Vehlon and Yourif' (Ilef. 43, j>. Hfi). '^I'ho transitivity of the equality of ratios is a

consequenre of in the .special form l-Sl.

t Young CRef. 45, pp. 08-90).
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When RS is the line at infinity. Fig. 4'7a reduces to Fig. 8'4d, with
AQ parallel to BP and A'P to B'Q. By 8-41,

CA_CQ CB'
CB CP ~ CA'

that is, CA X CA' = CB X CB'. Hence:
8‘42 If M is the point at infinity on the line AA', the involution

(AA') (CM) relates points X and X' such that the product CX X CX' is

constant.

Strictly, a product of distances is not defined. (Certainly we must not follow

Euclid in speaking of CX X CX' as a “rectangle ”
!) But the above statement is

easily expressed in terms of ratios: we mean that
CX
AqAi

CX' .

X ~T i • IS constant.A 0.^1

By 4’63, the center of a hyperbolic involution is midway between the
two invariant points. Hence:

8-43 The relation PL(AB, XX') is equivalent to CX X CX' = CA^
where C is the mid-point of AB.

A “trivial” involution, for which the point at infinity is invariant, has no
center in the above sense. But now another point takes over that role: the
second invariant point Aq. A. pair of corresponding points, being harmonic
conjugates wo Ao and Aod, are equidistant from Ao on opposite sides, i.e., the
algebraic sum of their distances from .4o is zero. More generally, taking an
arbitrary origin O instead of Aq, the sum of their distances from 0 is constant.

EXERCISES
1. On a line that meets the sides of a triangle PQR in A, B, C, points A', B',

C' are chosen so that the segments AA', BB', CC' all have the same mid-point.
Prove that the lines PA', QB', RC' are concurrent. (Hint: See 4-71.)

Prove that the mid-points of two pairs of opposite sides of a quadrangle
form a parallelogram (whose sides are parallel to the remaining two sides of

the quadrangle) . Deduce that the three lines joining the mid-points of opposite
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sides are concurrent (having, in fact, a common mid-point; see Sec. 8*3,

Exercise 1).

3. Show that the relation XX') is equivalent to

AX
BX

AX'
BX = 0.

Hint: Evaluate {CX - aA)iCX' - CB) + (CX - CB)(CX' - CA).
4. Show that the relation tl(AB, XX') is equivalent to

J_ . J L
AX AX'' ~ AB'

so that AB is the harmonic mean between AX and AX'. (This is the origin of

the name harmonic set.)

8*6 Translation and Dilatation.* Let o denote the line at infinity.

An elation wdth axis o is called a translation, and a homology with

axis o is called a dilatation. In particular, a harmonic homology with

axis o (that is, an involutory dilatation) is a half-turn. In this case, by
8-32, the joins of pairs of corresponding points all have the same mid-

point; consequently the half-turn is sometimes called reflection in a

point or central inversion. (We may think of it as the transformation

that interchanges the numerals 6 and 9.)

In the first part of Fig. 5-2a (with c> at infinity), ABB'A' is a paral-

lelogram. Hence AB = A'B' if and only if there is a translation that

takes AB to A'B'

.

By 5*21, the translation is determined when we are

given the corresponding points A and A'. We naturally call it the

translation from A to A'. The transitivity of the congruence relation is

now revealed as a consequence of the fact that the product of the

translatioiT from P to Q and the translation from Q to R is the transla-

tion fronj P to R (see 5-2.5). The projeetivity of 8-31 is induced by the

translation in accordance with ,5-2.3.

In this manner the notion of congruence can be extended from seg-

ments to figures of any kind: two figures are congruent if one can be

derived from the other by a translation.

Similarly, two figures arc said to be homothetic (or similar and simi-

larly situated) if one can be derived from the other by a dilatation;

e.g., two incongruent segments AB and A'B' on j>arallel lines are homo-
thetic from tlie center AA' • BB'

.

If instead the two incongruent

* Vel)k*n and Young (tb'f. 43, pp. . A rcinarkahly simple .self-eontained treat-

ment of affine geometry (using H-.'il to define dilatation) has l)cen given by Kinil Artin,

C’oordinates in Affine (Icoiuetry, Reports of a Mathematical ('olloquium (Notre Dame),

2-2, pp. 15-20, 1940.
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segments are both on the same line whose point at infinity is M, they
are related by the hyperbolic projectivity MAB MA'B'. This is

induced (according to 5-23) by a dilatation whose center is the second
invariant point of the projectivity, i.e., the center of the involution.

{AB')(BA') (see the preamble to 4*67). Hence:

8*61 Any two incongruent segments, on one line or on parallel lines,

are related by a dilatation.

In particular, if AB = B'A', the dilatation from AB to A'B' is a.

half-turn, and the center is the common mid-point of AA' and JBJB' ^

This suggests the desirability of extending the meaning of congruent
to include congruent by a half-turn, so that we can write

AB = BA

From now on we shall use congruent in this wider sense, which will
cause no confusion since, by 5‘28, any translation can be expressed as
the product of two half-turns. Accordingly, instead of the distance

which may be positive or negative according to the sense, we consider
the length AB, which is essentially positive. Then two segments are
congruent if and only if they have the same length.

By 5*24, if the sides of one triangle are parallel to respective sides of
another, the two triangles are either homothetic or congruent. They
are congruent by translation if the joins of corresponding vertices are
parallel, and congruent by a half-turn if the joins have a comruon
mid-point.

EXERCISES
1. Show that the product of a translation and a half-turn is a half-turn.
2. Let C and C' be arbitrary points on the opposite sides AB and A'B' of £i

parallelogram Let the line (BC' • CB') (CA' • AC') meet AA' in. JP and
BB' in Q. Prove that AP = QB'. {Hint: Use 4 '31 and the symmetry of tlio
parallelogram.)

8*6 Area.*^ In affine geometry we cannot compare lengths iri

different directions. But we can compare areas in any position, since
the ratio of two areas is invariant under parallel projection (see
Sec. l‘£).

A region of the affine plane (not including any point at infinity) is
called a polygon if it is entirely bounded by line segments. Clearly, any
polygon can be dissected into a finite number of triangles. Two poly-

* This is essentially the treatment of Hilbert (Eef. 19, Chap. IV), simplified by sicl-
mitting continuity, but generalized by avoiding the use of right angles. For a more
rigorous treatment see Veblen and Young (Ref. 43, pp. 96-104).
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gons are said to be equivalent if (1) they can be dissected into a finite

number of pieces that are congruent in pairs, or if (2) it is possible to

annex to them one or more congruent pieces so that the completed poly-

gons are equivalent in the first sense. In other words, two polygons are

equivalent if they can be derived from each other by addition or sub-

traction of congruent pieces. By superposing two different dissections,

we see that two polygons equivalent to the same polygon are equivalent

to each other.

The parallelograms OPRQ and OPR'Q' of Fig. 8 ‘6a are equivalent

since the same trapezoid OPR'Q is obtained by annexing triangle PRR'
to the former or OQQ' to the latter. Hence:

8-61 Two 'paraUelotjrams are equivalent if they have one pair of

opposite sides of the same length lying on the same pair of parallel lines.

We could almost as easily prove this by taking the two parallelo-

grams to liavc the same center (instead of a common base), so that

the dissection would be centrally symmetrical. Since a parallelogram

can be tlissccted along a diagonal into two triangles that are congruent

by a half-turn, it follows that two triangles are equivalent if they have
congruent sides on one line and opposite vertices on a ])arallel line

(i.e., equal bases ainl equal altitudes). The actual dissection for such

a pair of triangles is illustrated in Fig. 8 (>n.

By annexing a further triangle OPQ' to each of two equivalent

triangles with a common base PQ'y as in Fig. 8-(>(\ we dc<luce the

following:

8*62 Two triangles OPQ, and OP'Q', having a cmnnion angle at 0,

are equivalent if the lines PQ' and P'Q are parallel.

By “doubling” these triangles, as in Fig. 8 Gr), we dc<luce:

8*63 Two parallelograms OPRQ wnd ()P'R'(}'y having a common
angle at 0, are equivalent if the lines PQ' and P'Q are parallel.

This suggests the propriety of selecting a certain parallelogram

OACR as unit of measunmieul and defining the area of a parallelogram



108 AFFINE GEOMETKY [8-63

OPRQ, with P on OA and Q on OB, to be the number

gp^qq
OA ^ OB

By 8*41 and 8*63, two such parallelograms OPRQ and OP'R'Q' are

OP' OQ
equivalent if they have the same area. It follows

that a parallelogram OPRQ, having two sides along the lines OA and

OB, is equivalent to a parallelogram OAC'B' where B' is constructed

OB'by drawing PB' parallel to AQ, as in Fig. 8*6e. The area is simply

We now define the area of any polygon to be the area of an equivalent

parallelogram OAC'B'

.

To see that the combined area of two or more
juxtaposed polygons is the sum of their areas, we merely have to

“stack’’ the equivalent parallelograms, as in Fig. 8*6f.

When we wish to compute the area of a given polygon, we fir.st

dissect it into convenient pieces and then draw an equivalent parallelo-



8-7] ABEA OF A POLYGON 109

gram for each piece. A practical way to do this is to draw through each

vertex of the polygon a line parallel to OA, thus dissecting the polygon

into triangles, parallelograms, and trapezoids. We then dissect each

trapezoid into two triangles by drawing a diagonal. Each piece is now
a parallelogram or triangle having one side parallel to OA, and this

can be translated to a position where the side proceeds from 0 along

OA. This in turn may be replaced

by a parallelogram with another side

along OB, using 8-61 if the piece is

a parallelogram and the following

device if it is a triangle : For a triangle ^
OPS whose side OP lies along OA, as ,

in Fig. 8-6g, an equivalent parallelo- /

gram with sides in the desired direc- h
tions is OPRQ, where the line QR o
joins the mid-points of OS and PS, Q Fig. g-eo

lies on OB, and PR is parallel to OB.

Finally, we alter the base OP (unless P already coincides with A) as in

Fig. 8'6d.

In this manner the ordinary properties of area may be established

without using any concepts (such as right angles) that are outside the

domain of affine geometry. The unit parallelogram OACB takes the

place of the familiar unit square.

EXERCISES
1. If the linear dimensions of a figure are doubled by a dilatation, show that

the area is ((iiadruph'd.

2. Give an affirn^ i)roof for the following special case of Pappus’s theorem:

If alternate vertices of a hexagon lie on two intersecting lines, while two pairs

of opposite sides are parallel, then the remaining sides arc parallel.* {Ifint: In

the notation of Fig. 4-3a with LN at infinity, we have equivalent triangles

OAA', OBB', OCC', by 8 0S2.)

8-7 Classification of Conics.t The line at infinity, o, enables us

to distinguish three ty7)cs of conic: ellipse, parabola, and hyperbola.

By <lefiuition, the conic is an ellipse if o is an exterior line (or e line), a

parabola if o is a tangent, a hyperbola if o is a secant (or h line). These

are shown diagraramatically in Fig. 8-7a. By the dual of 6-56, a unique

parabola can be drawn to touch the sides of a given quadrilateral.

The pole of o is the center, 0. Thus the center of an ellipse is an

* Vehlen and Young (Ref. 43, p. 103); ef. Paseh an<l Dehn (Ref. ii7, p. ^30).

t von Staudt (Ref. 40, pp. 133, 30,5, §§343, 341-343).
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interior point {E point), the center of a parabola is its point of contact

with o, and the center of a hyperbola is an exterior point {H point).

In the last case we can, of course, draw two tangents from the center:

these are the asymptotes of the hyperbola (cf. Sec. 1*5, Exercise 2).

Their points of contact are on the line at infinity and decompose the

hyperbola into two arcs, called the two branches.

Any line through 0 is a diameter. Since the center of an ellipse is

interior, all its diameters are secants. Since the center of a parabola is

at infinity, its diameters are parallel secants. Since the center of a

hyperbola is exterior, it has diameters of all kinds : the two asymptotes

o

separate those which are secants from those which do not meet the

hyperbola at all.

In the domain of ordinary points, a parabola has no center. Accord-

ingly the ellipse and hyperbola are called ceriirnl conics.

When we apply 6-83 to the line at infinity, we find that the nine-

point conic contains the mid-points of the sides of the quadrangle and

the centers of all the conics of the quadrangular pencil. Hence:

8*71 The mid-points of the s-ix sides of a quadrangle and the three

diagonal points all lie on a conic.

EXERCISES
1. Show that a central conic is vsymraetrical about its center. (Apply Exer-

cise 4 of Sec. 6-4 to the half-turn about 0.)

2. If a diameter of a central conic is a secant, show tliat the tangents at its

two “ends” are parallel. On the other hand, a parabola has no two parallel

tangents.

3. Prove that the locus of centers of conics inscribed in a quadrilateral is a

line through the mid-points of the three diagonals. (Jlint: Use the dual of 5*81.)

Deduce that this line is a diameter of the escribed ])arabola.

4. Show that the three lines joining the niid-i>oints of <.>pposite sides of a

quadrangle are diameters of the nine-point conic (cf. Sec. 6-8, Exercise 5, and

Sec. 8-4, Exercise 1).
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5. Justify the construction of Sec. 6-5, Exercise 6.

6. Prove that the center of a conic cannot be interior to a self-polar triangle.

{Hint: Use 6-21.)

7. Through a variable point X on a fixed line, a line c is drawn parallel to
the polar of A wo a given ellipse. Prove that c envelops a parabola.*

8*8 Conjugate Diameters, f A chord of a conic is the segment
joining two distinct points on the conic.

8*81 The mid-points of parallel chords lie on a diameter.

Proof: The parallel chords have a common point at infinity whose
polar bisects them all, by 6-41 and 8-32. This polar, being conjugate
to o, is a diameter conjugate to all the chords.

Hence, to construct a diameter, we merely have to join the mid-points of two
parallel chords, as in Fig. S-8a. The center can be found as the point of inter-

section of two diameters.!!;

By ,'5-53, conjugate diameters of a central conic are pairs of an involu-

tion. Since the invariant lines (if any) are asymptotes, this involution

is elliptic or hyperbolic according as the conic is an ellipse or a hyper-
bola. (In fact, this is the origin of the names for the two types of

involution, ami thencis l>y analogy, the names elliptic, parabolic,

hyperbolic for the three typos of projeetivity.) By 6-42, as La Hire
observc'd

:

8*82 A nif pair of conjayate diameters of a hyperbola are harmonic
conjugates wo the asymptotes.

Two conjugate diarnetcM's form, with the line at infinity, a self-polar

triangle, which has one c side and two h sides, as in Fig. 6-2c (second

* Ghaslcs (Hof. 4, p. 198).

t Apollonius (llof. 1, pp. 48-0.^, lib. T); Chsisles (llof. 4, pp. 114117); Ilryt- (Hcf. 31,

pp. 100-107).

t Apollonius (Itef. 1. pp. ^5 ‘207, lih. II. prop. 14, ir,).



112 AFFINE GEOMETRY [8-83

part). Hence, in the case of an ellipse both diameters are secants, but

in the case of a hyperbola one is a secant and the other an exterior line.

We shall make use of the next theorem in Sec. 9-2, where we develop

the theory of circles.

8*83 If a parallelogram is inscribed in a conic, its two diagonals are

diameters of the conic and its sides are parallel to a pair of conjugate

diameters.

Proof: The sides and diagonals of the parallelogram form a quad-

rangle whose diagonal triangle has two vertices at infinity, so one side

of this triangle is o. By 6*43, its other two sides are conjugate diameters

parallel to the sides of the parallelogram, (The conic, having the same

center as the parallelogram, obviously cannot be a parabola.)

The. following theorem makes a neat companion for 8-81:

8*84 The mid-points of chords that pass through a fixed point {not on

an asymptote) lie on another conic.

Proof: LetP be the point at infinity on the chord x through the fixed

point A. This chord is bisected by the conjugate diameter p, and we
have a; 77 P x 3?- The lines x (through A) and p (through O) can never

coincide unless OA is an asymptote. Hence, by 6-54, the point x • p
lies on a certain conic through A and 0.

Theorem 5'82 shows that we can find infinitely many conics having a given

involution of conjugate points on a line a whose pole is a given point A. In

particular, we can find infinitely many conics having a given center and a

given involution of conjugate points on o, i.e., having a given involution of

conjugate diameters. If the involution is elliptic, the conics are ellipses any

two of which are related by a dilatation (see 6*84). If instead it is hyperbolic,

the conics are hyperbolas having the same asymptotes (i.e., having double

contact at infinity). They fall into two subsystems such that any two hyper-

bolas belonging to the same subsystem are related by a dilatation. But two

belonging to different subsystems are not so simply related;* for they are

separated by their common asymptotes. To derive one from the other we need

a homology whose center is at infinity (i.e., a transformation of the kind that

von Staudt called an ajfinity). In the special case when this is a harmonic

homology (or affine reflection) they are called conjugate hyperbolas. These

remarks may be summarized as follows:

8*85 A conic can be drawn through a given point so as to have two

given pairs of concurrent lines as conjugate diameters. The conic will be an

* It is amusing to observe that Chasles (Ref. 4, pp. 246, 248) missed this little com-

plication, although many properties of conjugate hyperbolas had been known since the

time of Apollonius.
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elli'pse or a hyperbola according as the pairs do or do not separate each
other. By varying the point we ohtainy in the former case, a system of
homothetic ellipses all having the same involution of conjugate diameters

and, in the latter, two ‘^conjugate''* systems of homothetic hyperbolas all

having the same asymptotes.

EXERCISES
1. Applying 8-81 to a hyperbola, investigate the nature of the diameter when

the chords (a) join points on the same branch or (6) join a point on one branch
to a point on the other. Observe that in the former case the diameter passes

through the points of contact of two tangents parallel to the chords.

2. Prove that the diagonals of a parallelogram circumscribed about a cen-

tral conic are conjugate diameters.

3. As a corollary of 8-83, any parallelogram inscribed in a conic is concentric

with the conic. Deduce that the mid-points of the six sides of a quadrangle lie

on a conic. (This provides an elementary proof for part of 8-71.)

4. Given two conjugate diameters a, b and a point P on the conic (but not

on a orb), construct an inscribed parallelogram PSQR whose sides are parallel

to o and h.

5. Show that, when 8*84 is applied to a parabola, the locus is another para-

bola.*

6. Let aa' and bh' be two pairs of conjugate diameters of an ellipse. Prove
that the sides of the parallelogram formed by the ends of a and b are parallel

to those of the parallelogram formed by the eiuls of a' and b'. {Hint: Let m and
n be the common harmonic conjugates of the pairs ah and a'b'. The involution

of conjugate diameters interchanges tlicsc i>airs. Being elliptic, it cannot leave

m and n separately invariant and hence must interchange them.)

8-9 Asymptotes. t The hyperbola provides a greater variety of

special theorems than the other kinds of conic do, because of the

existence of asymptotes. It is hoped that, after following the proofs of

a few specimen theorems, the reader will feel prepared to deal with

any affine properties of the hy|)erbola that may be proposed, either in

the accompanying exercises or elsewhere.

8*91 Any tangent to a hyperbola meets the two asymptotes in points

equidistant from the point of contact.

Proof: If M is the point of contact of the tangent PQ, as in Fig. 8 *9a ,

the parallel diameter is conjugate to OM

.

By 8 -82 , these two diameters

are harmonic conjugates wo the asymptotes OP and OQ,. Thus M and

the point at infinity on PQ arc harmonic conjugates wo P and Q', i.e.,

M is the mid-point of PQ.

* Smith (!lcf. ;{t), p. 137, No.

t Apollonius (Ref. 1, pp. 198--231, lib. II, prop. 3-21).
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8*92 If a chord AB of a hyperbola meets the asymptotes in P and Q,
then PA = BQ.

Proof: The chord AB is bisected by the conjugate diameter, as we
saw in the proof of 8-81 (see Fig. 8 -9b). But 8-82 shows that this same
diameter bisects the segment PQ. Thus AB and PQ have the same
mid-point.

O

8*93 If the tangent to a hyperbola at M meets the two asymptotes in P
and Q, while MX is parallel to the latter asymptote, then the polar of X
is the line through Q parallel to PX.

Proof: Let R denote the point at infinity on PX, as in Fig. 8'9c.
This point is conjugate to the vertex 0 of the triangle OPQ, which is

circumscribed about the hyperbola. Hence, by 6-57, PR and QR are
conjugate lines. Moreover, MX, joining the points of contact of the
two tangents from Q, is the polar of Q. Thus QR, being conjugate to
both PR and MX, is the polar of their point of intersection, X.
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8*94 A variable tangent to a hyperbola cuts offfrom the asymptotes a
triangle of constant area

Proof

:

Let PQ and P'Q' be two tangents to the hyperbola, with P
and P' on one asymptote, Q and Q' on the other, as in Fig. 8-9d. These

two tangents form, with the two asymptotes, a quadrilateral OPP'QQ'R,
circumscribed about the hyperbola. The three diagonal lines are PQ\
P'Q, an<l Oil. The last is a diameter; therefore its pole, PQ' • P'Qy is at

infinity, which meiiris that PQ' anxl P'Q are parallel. By 8*62, triangles

OPQ and OP'Q' hav'c the same area.

8'96 Corollaiy: If a variable line cuts off from two fixed lines a tri-

angle of constant area, its cni'clope is a hyperbola, and the locus of the

mid-point {of the seijment intercepted) is the same hyperbola.*

EXERCISES
1. If tliroiigli any point A a lino APR is drawn parallel to an asymptote of

a hyj)erhola, cnl ling tlie <Mirve in P an<l the polar of A in R, show that P is

tlic mitl-point of AR.*
•ov'<“ tlijit tli(^ nii<l-i)<)ints of chords of a hyperbola that pass through a

fixe<l ][)oint on an asymplote lie on a line parallel to the other asymptote.

{/lint: Use

3. A v'ariabh' s<'gn\(Mit has ils ends on two fixed lines and passes through a

* Smith (Ref. 3!), p. 'i03. Nos, 4 and 11).
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fixed point. Prove that the locus of its mid-point is a hyperbola whose asymp-
totes are parallel to the given lines.*

4. If a tangent to a hyperbola meets the two asymptotes in P and Q, prove

that any two parallel lines through P and Q are conjugate.

5. A parallelogram has its sides parallel to the asymptotes of a hyperbola,

and one of its diagonals is a chord. Prove that the other diagonal passes through

the center of the hyperbola.*

6. Let PQ and P'Q' be two parallel tangents to a hyperbola, with P and P'

on one asymptote, Q and Q' on the other. Prove that PQ' and P'Q are tangents

to the conjugate hyperbola, and that the parallelogram PQ'P'Q has constant

area.

7. When a quadrangle is convex, so that its nine-point conic wo o is a hyper-

bola, Exercise 5 of Sec. 6-8 shows that three pairs of the nine points are joined

by diameters; therefore three points occur on one branch of the hyperbola
while three take diametrically opposite positions on the other. Prove that the

remaining three points (the diagonal points of the quadrangle) are all on one

branch, i.e., that the nine points are distributed as 3 + 6 between the two
branches. (This is not easy.)

* Smith (Ref. 39, p. 203, Nos. 3 and 12).



CHAPTER 9

EUCLIDEAN GEOMETRY

The time has come for us to fulfill the promise of Sec. 1-6, that we
should return to ordinary geometry from a new point of view. We
shall see how von Staudt’s idea of choosing an elliptic involution on

the line at infinity of the affine plane enables us to define perpendicu-

larity and congruence, so that distances can be compared in any direc-

tion. Many problems of Euclidean geometry are most easily solved by
the projective approach. But at this stage we are free to use either the

new method or the old, whichever is found more convenient at the

moment.

9*1 Perpendicularity. Wc have seen that affine geometry can be

derived from real projective geometry by singling out for special treat-

ment a line “at infinity,”' which enables us to say when two other lines

are parallel. Similarly, we shall find that Euclitlean geometry can be

derived from affine geometry by singling out an elliptic involution on

that special line, to serve as the absolute involution, which enables us

to say when two lines are j^erpcndicular. From the standpoint of pro-

jective geometry, all elliptic involutions arc exactly alike; but as soon

as we have specialized one such involution, we can say (as a definition)

that two lines shall be called perpendicular if their points at infinity are

a pair of the absolute involution.

To see that this agrees with our usual ideas about perpendicularity,

we merely have to observe that the corresponxlence l)etween perpen-

dicular lines is symmetric and preserves liarmonic sets, so that it is an

involution: elliptic because no line is perpendicular to itself. We call

it the orthogonal involution.

Many properties of perpendicularity are immediate consequences

of this definition; e.g., two perpendiculars to one line arc parallel. The
perpendicular line through the mid-poiiit f)f a given segment is called

the right bisector of the segment. A parallelogram that has two perpen-

dicular sides is callc<l a rectangle. A triangle that has two perpendicular

sides is called a right tria'figle: any other kind of triangle is said to be
117
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oblique. The altitudes of a triangle are defined to be the perpendiculars

from the vertices to the respectively opposite sides. The “feet” of the

altitudes are said to form the pedal triangle.

9*11 The three altitudes of a triangle are concurrent.

Proof:* For a right triangle this is trivial, so let us assume the given

triangle PQR to be oblique, as in Fig. 9Ta. Let the altitudes from P

JP ud

and Q intersect in S. Then the quadrangle PQRS determines on the

line at infinity a quadrangular set of points, two of whose pairs belong

to the absolute involution. Hence, by 4-71, the third pair likewise

belongs to this involution, and RS must be the third altitude of the

triangle.

The point S is called the orthocenter of triangle PQR. (In the case of a

right triangle, with PR perpendicular to QR, the ortliocenter coincides

with R.)

9*12 Corollary: If S is the orthocenter of an oblique triangle PQR,
then P is the orthocenter of QRS, and so on. The pedal triangle of any one

of these four triangles is the diagonal triangle of the quadrangle PQRS.

We define a rectangular hyperbola as one whose asymi>totes are

perpendicular (or whose points at infinity are a pair of the absolute

involution). By Desargues’ involution theorem (our 6*73)

:

9*13 Every conic through the vertices and orthocenter of an oblique

triangle is a rectangular hyperbola.

\

If P, Q, R are the mid-points of the sides of a triangle ABC, as in

Fig. 9Tb, the right bisectors of those sides are the altitudes of the

medial triangle PQR. Hence

:

* von Staudt (Ref. 40, p. 205, §339).

t Baker, (Ref. 2a, p. 83).
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9*14 The right bisectors of the three sides of a triangle are concurrent.

The point of concurrence (which is the orthocenter of PQR) is called

the circumcenter of ABC,

EXERCISES
1 . Prove that those chords of a conic which subtend a right angle at any

fixed point on the conic are concurrent.*

2- Show that every rectangular hyperbola through the vertices of a triangle

passes also through the orthocenter.

3. Prove that just one rectangular hyperbola can be drawn through the

vertices of a quadrangle not consisting of a triangle and its orthocenter. (By

Exercise 2, this passes also through the orthocenters of the four triangles

determined by these vertices.!)

9*2 Circles. In affine geometry there is no distinction of shape

between one ellipse and another: though we can say which has the

greater area, we cannot say which has the greater “eccentricity.” But
the absolute involution enables us to make this further distinction, and

in particular to define a circle.

Definition: A circle is a conic for which the involution of conjugate

diameters coincides with the involution of perpendicular diameters.

By applying 8*85 to two pairs of perpendicular lines through one

point, wc verify that such a conic e.xists. In fact:

9*21 Just one circle may be described, unth any center to pass through

any given point.

Thus we have proved Euclid’s third postulate. It follows that a

unique circle can be drawn with any given segment for a diameter.

When a circle is drawn with center O to pass through a point yl, the

segment OA is called a radius.

The diameter conjugate to a given chord is its right bisector. Con-

versely, any point 0 on the right bisector of a given segment AB is the

center of a circle through yl and B; for the circle with radius OA must

l>ass through B also, since the line AB is conjugate to the right bisector.

Hence the circumcenter of a triangle A BC (9-14) is the center of a circle

I h rough the three vertices:

9*22 Any three rioncollinear points lie on a unique circle.

This is called the circumcircle of the triangle,

* von Staudt (Ref. 40. p. 200, §344). 'rhe point, of ront nrrenee is known a.s the FHgier

point.. It lies on the normal to the conir at Iho ffiven point.

t See llolgate (Ref. 21, p. 207).
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Since any two conjugate diameters are perpendicular,

9*23 The polar of a point wo a circle is perpendicular to the diameter

through the point.

In particular:

9*24 A tangent to a circle is perpendicular to the diameter through

its point of contact.

Since the involution of perpendicular diameters is elliptic, a circle is

an ellipse. Ellipses that are not circles may conveniently be called

eccentric ellipses. Since an involution is determined by two of its pairs,

9*26 If a conic has two distinct pairs of perpendicular conjugate

diameters^ it must he a circle.

By 8-83, any parallelogram inscribed in a circle is a rectangle whose

center is the center of the circle. Hence:
9*26 The lines joining the ends of a diameter to any other point on

the circle are perpendicular.

In other words, “the angle in a semicircle is a right angle” (Euclid

III. 31). Conversely,

9*27 The locus of the point of intersection of perpendicular lines

through two fixed points is a circle.

Proof:LetM and N be the points at infinity on the two perpendicular

lines X and y. Since x M N y, the locus is a conic (6-53) that

has infinitely many inscribed rectangles with two fixed opposite

vertices. By 8'83 and 9-25, any two of these rectangles suflSce to make
the conic a circle.

By 8-85, concentric circles are homothetic. But we can say far more:

9*28 Any two circles are either congruent or homothetic.

Proof: We remark first that a translation or dilatation, being a col-

lineation that leaves invariant every point at infinity, transforms per-

pendicular lines into perpendicular lines and circles into circles. Let

the line joining the centers of two given circles determine respective

diameters AB and CD, and let M be the point at infinity on this line.

Applying 8*51, we see that if AB ^ CD (as in Fig. 9'2a), one of the

circles is transformed into the other by a dilatation from the center

of either of the involutions

iAD)iBC), (AC)(BD)

(These points, iVi and N^, are called the centers of similitude of the two
circles.) But if AB = CD, one of the dilatations has to be replaced by
a translation, while the other becomes a half-turn.
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Some of the above ideas suggest an elementary proof for the famous
theorem of the nine-point circle:

9*29 If S is the orthocenter of a triangle PQR, then the mid-points of
the six segments QR, RP, PQ, PS, QSy RS and the feet of the three alti-

tudes all lie on a circle.

Proof Let X, M, N, Z', M', N' be the six mid-points and PAy QB,
RC the three altitudes, as in Fig. 9-2b. By 8-41, both NM and M'N'

P

arc parallel to QR, and both M'N' and NM' parallel to /\S'. Thus
MNM'N' is a rectangle. Similarly NLN'JJ is a rectangle. Hence LIJ

y

MM' y NN' are three diameters of a circle. Since LA and L'A are per-
|)en(licular, this circle passes through yl ; similarly, it passes through
B and (J.

It is interesting to observe that this is a sp(‘cial ease of the nine-point conic
(8-7]). ''rims the centers of the reetangulur h,vj)erb<)las of 913 all lie on the
nine-j)oint eirc'h*.

* This proof, due to V. K. Dictrieh, re.scinl>les Hint of Durell (Rof. 10, p. ^7).



122 EUCLIDEAN GEOMETKY
[
9.3

A certain dilatation from the orthocenter S will transform the mid-points of
PS, QS, RS into the vertices P, Q, R themselves and will consequently trans-
form the nine-point circle of triangle PQR (which is the circumcircle of ABCy')
into the circumcircle of PQR. In other words, the nine-point circle is the locus
of a point midway between the orthocenter and a point that runs round tlao
circumcircle. It follows that the nine-point center is midway between tlie
orthocenter and circumcenter. The line on which these three points lie is called
the Euler line of triangle PQR.

Theorems 9*26 and 9-27 show that the above definition for a circle is
equivalent to Euclid’s. Hence we can now reconcile von Staudt’s defini-
tion for a conic with the classical one. For, any plane section of a circu-
lar cone is a central projection of a circle (as described in Sec. 1-3).

EXERCISES

1. If a triangle is self-polar wo a circle, show that its orthocenter is tlxo
center of the circle. {Hint: Apply 9-23 to each vertex of the triangle.)

2. Prove that the centroid (Sec. 8 3, Exercise 2) lies on the Euler line.*

3. Prove that the centers of similitude are harmonic conjuates wo the cen-
ters of the two circles. {Bird: In the notation of Fig. 9-2a we have

iViA X NiD = NiB X NiC and N-iA X N-iC = N^B X

therefore NiO/NiQ == OA/QC = —N2O/N 2Q.)

4. Let CA and CB be two tangents to a circle with center O. Join A, B, C to
any point S on the circle by lines cutting the diameter perpendicular to OS in
A', B', C. Prove that C' is the mid-point of A'B'. {Hint: SA and SB are har-
monic conjugates wo SC and the tangent at S.) This could have been made into
an affine theorem by changing the words circle and perpendicidar into centrczl
conic and conjugate. But the Euclidean theorem has an interesting application
to solid geometry; for it shows that, when a small circle AB on a sphere isi
projected stereographically from S, the center C of the projected circle como«
from the vertex C of the corresponding enveloping cone.f

9*3 Axes of a Conic. An axis of a conic is defined as a diametoT*
which is perpendicular to the chords it bisects {i.e., it is an axis oi*
symmetry; see Fig. 9-3a). In the case of a parabola, all diameters are
parallel, and there is just one system of chords perpendicular to them .
Hence

:

9*31 A parabola has just one axis.

This can be constructed by joining the mid-points of two chord .«3

* Robinson (Ref. 32, p. 48).

t Donnay (Ref. 9, p. 10).
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drawn perpendicular to any diameter* (and the diameter can be
constructed by joining the mid-points of any two parallel chords).

In the case of a central conic (ellipse or hyperbola) we consider two
involutions of diameters:

1. Conjugate diameters (an elliptic or hyperbolic involution).
2. Perpendicular diameters (always an elliptic involution).

Fig, 9-3a

For a circle, these two involutions coincide. In every other case we
can find (by the <lual of 7-55) just one common corresponding pair.

This is a pair of ])erpen(]icular conjugate diameters, i.e., a pair of axes.

Hence:
9*32 .1 central conic, other than a circle, has just two axes.

But a circle has infinitely many axes: every diameter is an axis.

The axes of an ellipse (like all its diameters) are secants. Likewise

the axis of a |)arahola is a secant (though one of the intersections is at

infinity). But in the case of a hyperbola, one axis is a secant while the

other is an exterior line; these are called the transverse axis and conju-

gate axis, respectively.

When an axis is a secant, the points where it cuts the conic are called

vertices. Thus a parabola has one vertex (unless we agree to admit

another at infinity), a hyperbola has two vertices, and an eccentric

cllip.se has foxir.f But a circle has infinitely many: every point on the

circle is a vertex.

* Apollonius (llof. 1, pp. 207-''271, lib. IF, prop. 40-48).

t von Slninll (Rof. 40, p. 20(5, §842).
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EXERCISES
1. Show that the circle on the transverse axis of a hyperbola as diameter

has double contact with the hyperbola and that the circle on either axis of an
eccentric ellipse as diameter has double contact with the ellipse.

2. Consider a conic and a point P not on it nor at its center (if it has a cen-
ter). Let y be the line through P perpendicular to the chords bisected by o-

variable diameter x. Prove that the locus of a; • y is a rectangular hyperbolft
through P. (This is known as Apollonius’s hyperbola. It passes through the?
feet of the normals that can be drawn from P to the given conic.)

9*4 Congruent Segments. In affine geometry we were able to
define congruent segments on one line or on parallel lines. In Euclideax:i
geometry we can define congruent segments in different directions, a.s
follows:

Segments OA and OB are said to be congruent by rotation if A and JS
lie on a circle with center 0. Then we write

OA = OB

(Radii of a circle are congruent.) If a translation takes OA and
OB to two radii O’A' and O'B' of another circle (so that OA = 0'jL '

and OB s O'B' by translation), we simply say that OA and O'J^'
are congruent, writing OA = O'B'. This relation is clearly reflexive,
symmetric, and transitive. The method of Sec. 8 "4 now enables us to
define the length of any segment in terms of a standard segment as
unit. In particular, if C is exterior to the circle with radius OA, we say
that OC is greater (or longer) than OA, writing

OC > OA

If two axes of an ellipse are congruent, their four ends (forming a
square) he on a circle that touches the ellipse at all four places and
therefore coincides with it entirely. Hence an ellipse having equal aace-s
is a circle. Apart from this case, one axis of the ellipse must be longer
than the other. The longer and shorter are called the major and mirtoT-
axes.

Conjugate points on a diameter of a circle are said to be inverse wo
the circle. By 8-42, two inverse points have a constant product of dis-
tances from the center. Since any point on the circle is its own inverse,
this product is equal to the square of the radius. In virtue of 9-23, we
may express this result as follows:

9 41 For a circle of radius p, the product of the central distances of <x
point and its polar is equal to p^.
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EXERCISE
Show that any affine property of a parallelogram can be deduced from the

corresponding property of a square. Hence (or otherwise) prove the following

affibie theorem:

Of all the ellipses circumscribing a given parallelogram, the one for which
the diagonals are conjugate diameters has the smallest area.

Eint: We know from elementary analytic geometry that the ellipse

1

of areawafe, is circumscribed about the square (±c, ±c) if

9*6 Congruent Angles. Let a and b be two intersecting lines,

while a' and h' are the respective perpendiculars through their common
point. Let c, d, c\ d' be another such set of concurrent lines. The

I

ordered pair of lines {ah) is called an angle. We say tliat the two angles

(ab) and (cd) are congruent if the following two conditions are satisfied:

(i) aha'h -7^ cdc'd'

(ii) S(«6ff/) = S(cdc')

(see Fig. 9 -/) a). Wc then write

{ab) {cd)

This is clearly an equivalence relation, like the congruence of seg-

ments. It holds if a and b are respectively |)arallel to c and d (in which
0

case aha'})' ^ cdc'd'). Moret>ver, {al)) = {a'!)').
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Angles {ah) and (6a) are said to be supplementary. The angle {aa') is

called a right angle.

9»61 The only angle congruent to its supplement is a right angle.

Proof: Given (ah) = (6a), we wish to show that b = a' (and conse-
quently 6' = a). If this were not so, we should have four distinct lines
a, 6, a', h' such that

S(a6a') = S(6a6') S(a66 ')

whence db/fa'h'. But since the involution of perpendicular lines
(aa0(660 is elliptic, we have aa'J/hh'. This provides the desired
contradiction.

If three concurrent lines a, 6, m have the property (am) = (m6), we
say that m bisects the angle {ah).

9‘62 If a line m bisects {ab)» then the perpendicular line n does like-
wise, and H(mn, ah).

Proof: We have ama'n mbnV b'nbm, by the dual of 2-71.
Therefore mn is a pair of the involution (ab')(a'b). It is also a pair of
the orthogonal involution (aa')(660. Hence m and n are the invariant
lines of the product of these two involutions, which is {ah){a'b'). This
proves that H(mn, ah). Moreover, ana'm 77 mh'nb — nbmb\ and,
reversing the sense S(ama') = S(m6w), we have S(a7ia') = S(n6m)

*

therefore (an) = (n6).

It follows that the relation (am) = (cm) for concurrent lines a, m, c
implies a c, therefore the same relation for nonconcurrent lines
implies that a and c are parallel.

The converse of 9*52 was discovered by Desarguesi*
9*63 If H(mn, a6) and m is perpendicular to n, then m and n bisect

the angles between a and 6 .

Proof: Applying the orthogonal involution to the given harmonic
set, we have H(nm, a'b'). Thus ah and a'b' are two pairs of the involu-
tion (mm)(nn), and ama'n bmb'n — mbnb'. We could not have
(am) s {bm) without a and 6 coinciding. Hence (am) = {mb).

.
Angles that have a fixed pair of bisectors form an

involution of line pairs.

Another important property of angles is the following:
9*66 If two angles {ad) and {he) have the same bisectors, then

{ab) = {cd).

* See Coolidge (Ref. 5, p. 29).
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Proof: If m and n are the bisectors, the four pairs ad, be, a'd', h'c'

belong to the involution (mm)(nw). Therefore aha'b' x ded'e' x ede'd'.
Moreover, since S(a6a') 9^ S(dcd'), we have

S(aba') = S(c(fd') = S(cdc').

In dealing with angles at different points, it is convenient to use
another notation. If o is ylO and b is OB (so that A and B are arbitrary
points on the lines a and b, which intersect in 0), we write (AOB)
instead of (ab).

It should be emphasized that our definition of angle, while agreeing with
Johnson’s directed angle and Picken’s cross (Sec. 1-7), differs from the cus-
tomary definition, where the angle AOB would be changed into its supplement
by moving B along the line b to the other side of the vertex 0, and where
BOA would be considered either equal to AOB or its negative (certainly not
its supplement, as in the new treatment). The present convention has some
definite advantages, chiefly in avoiding the separate consideration of various
cases, as in the following theorem, where we should ordinarily have to make
different statements according as S(ACB) agrees or disagrees with S(ADB) :

9-66 For any four points A, B, C, D on a circle, (AOB) = (ABB).

Proof: The angle {A CB) is measured by means of the four lines join-
ing C to the vertices of the rectangle ABA'B' whose diagonals are diam-
eters A A' an<l BIP of tlie circle, as in Fig. 9-5b. Joining D, instead of

C

t'ig. {>•.'>» Fi|r. ().5r

C, to these same v ertices, we obtain a related set of four lines and thence
a congruent angle (.1 DB). The question of sense presents no difiSculty,

as the sense of the lines in eit her case agrees with S(.djS/l') on the circle.

Conversely, the circle ABC could be described as the locus of a
point X such that {ACB) ^
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Another famous theorem is Euclid I. 5 (pons asinorum)

:

9-67 If OA = OB, then (OAB) = (ABO).

Proof: Let AOA' and BOB' be diameters of the circle with ra

and OB, as in Fig. 9-5c. Applying the half-turn about O anc

9-56, we have

(OAB) = (OA'B'} = (AA'B') = (ABB') = (ABO)*

Theorem 9*53 helps us to obtain the following less trivial res

9*68 The altitvdes and sides of an oblique triangle bisect the

of its pedal triangle.

Proof: Let ABC be the pedal triangle of PQR, as in Fig. 9-5d
ABC is the diagonal triangle

quadrangle PQRS, the four lines

through A (or B or C) are a ha
set, by 2-52,

It follows that each of the four

P, Q, R, S lies in a different one
four regions determined in the

tive plane by the lines BC, CA,
8 is the one lying in the finite

ABC/o, we say that A

8

and
the internal and external bisectors of the angle A of triangle A

2

9*69 The bisectors of the angles of any triangle concur in sets

to form a quadrangle.^

Proof: Let the external bisectors of the angles 12 and C of t

ABC meet in P. We merely have to construct, as in 2-42, the
rangle PQR8 whose diagonal triangle is ABC.

Of the four points P, Q, P, S, the one in ABC/o is called the i

of triangle ABC, while the other three are the excenters

.

EXERCISES
If AT is the tangent at A to the circle ABC, prove that (.‘1 C 10 =

(Fig. 9-5b).

2. Show that the center of a circle lies on a bisector of the angle for
two intersecting tangents.

3. Prove that the incenter and excenters are the centers of four
touching the sides of the triangle.

Here we are using the sign s for congruent angles and = for identical ai
Sec. 1-7, where angles were regarded as magnitudes, this distinction was unnec

T von Staudt (Ref. 40, p. 209, §347),
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4. Prove that the axes of a hyperbola bisect the angles between the asymp-
totes.

5. Prove that the asymptotes of a rectangular hyperbola bisect the angles

between any pair of conjugate diameters.*

9*6 Congruent Transformations. We define the reflection in a
line m to be the harmonic homology whose axis is m while its center is

at infinity in the perpendicular direction. Thus any two points A and
B are interclianged by the reflection in the right bisector of the segment
AB^ and any two intersecting lines a and h are interchanged by the

reflection in either of the bisectors of the angle {ah). Moreover, if OA
and OB are congruent segments on a and h, a definite one of the angle

bisectors will serve to reflect A into B. By the dual of 5-27, the product
of two harmonic homologies having the same center is an elation.

Hence:
9-61 The product of reflections in two parallel lines is a translation.

We define a rotation al)out a ])oint O to be the product of reflections

in two linos through (). One instance has already been considered: By
5*32 and Sec. 8*5:

9-62 The product of reflections in two perpetidicular lines is a half-

turn.

We define a congruent transformation to be a collineation that pre-

serves length (and consc(|uentIy preserves the line at infinity and the

absolute involution). As instances we have a reflection, a translation, a

rotation, and more generally the |)roduct of any number of reflections.

By 5*12, a collinc'ation is determined by its eflect on any quadri-

lateral. TTenc<‘ a, eongruenl, transformation is deterrnine<l by its effect

on a triangle (which provides a (|ua<lrilat.eral when we ad<l the line at

infinity).

9*63 A congruent transforniation that leaves two points invariant is

either the ident ity or a reflect ion.

Proof: L<'t P and Q be the invariant ])oints. Then the transformation

relates two triangles PQ/l and PQIT, Tf li — J{\ we have the identity

(by 511). ()lln*rwis(‘ the altitudes from It and It' must have the same
‘4V)ot” (J, Il'O; tlius the transformation is a harmonic
homology with a.xis PQ, in fact, the reflection in PQ.

9*64 Any congruent transformatioti that leaves just one point invariant

is a rotation.

* Chasles (Ilt'f. 4, p. 117).
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Proof: Let the given transformation take a triangle PQR to PQ'R'.

Then PQ is transformed into PQ' by the reflection in a definite one of

the bisectors of {QPQ')» say m. We now have two triangles PQ'Ri and

PQ'R', as in Fig. 9 *6a. These must be distinct, since otherwise the

reflection in m would suffice and

^ every point on m would be invari-

ant. Hence the given transforma-

tion is the profluct of reflections

in m and PQ'

.

Our next theorem is reminiscent

of 4-22:

9*65 Any congruent transfor-

mation can he coristructed as a pro-

duct of reflections^ the number of

ivhich can he reduced to three.

Proof: If PQR is transformed into an entirely distinct triangle

P'Q'R'f we begin by reflecting in the right bisector of PP' and then use

one or two further reflections as above.

In the projective plane, the senses of two pencils may be compared

only if the pencils have the same center. But in the affine plane the

translation from the one center to the other enables us to compare the

senses of any two pencils (see the remark at the end of Sec. 8-2). Thus

we may classify congruent transformations as being direct or opposite,

according to the relation between the senses of corresponding pencils.

Since a reflection reverses the sense of every pencil, a congruent trans-

formation is direct or opposite according as it is the product of an even

or odd number of reflections. It follows from 9-63 and 9-64 that if an

opposite transformation has an invariant point it must be a reflection.

Therefore the product of reflections in any three concurrent lines is a

reflection. Thus if ^ is a rotation about 0, and fl> the reflection in any line

through 0, the product is another reflection, say <!>', and

^
Hence:

9*66 Any rotation is the product of two reflections, one of which may
he the reaction in any given line through the center of rotation.

In particular, the half-turn about 0 is the product of reflections in

any two perpendicular lines through 0.

We can now prove the converse of 9*55:

m
Fig. 9-6a
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9*67 If four concurrent lines satisfy {ah) = {cd), then the angles

{ad} and {be) have the same bisectors.

Proof: Let be the rotation that takes a to c, and consequently b

to d, let $ be the reflection in one of the bisectors of {be), and let

be the reflection Then

and this transforms a into

a* = a*^^ = = d

Thus the given bisector of {be) bisects {ad), too.

Interchanging b and c in 9-55, we deduce that the relation {ab) = {cd)

implies {ac) = {bd). Hence:

9-68 A rotation displaces different lines through congruent angles.

We are now ready for an interesting specialization of Steiner’s

construction

:

9*69 The locus of the paint of intersection of corresponding lines of

two congruent pencils is a circle or a rectangular hyperbola according as

the congruence is direct or opposite.'^

Proof: If the two ])cncils arc directly congruent, they are related by
a rotation and thus tlie angle between corresponding lines is constant

and the locus is a circle. On the other hand, if the two pencils are oppo-

sitely congruent, there are two pairs of corresponding lines that are

parallel (given by the invariant points of the hyperbolic projectivity

induced on the line at infinity). By 6*54, the locus is a conic having

asymptotes in these two (lirectif)ns. But when corresponding lines are

paralh‘l, the resp<‘etiv<*ly perpendicidar lines are likewise parallel;

hence the t wo j)airs mentioned above are perpendicular, and the locus

is a reelaugular hy|)erbola.

Wo now possess all the material nee<led for Euclid’s development of con-

gnuMit triangles ancl similar triangles; c.g., two triangles are similar if there

is a third triangle that is homothetie to the first and coiignicut to the second,

or vice v<‘rsa. Moreover, the theory of rotation leads to the measurement of

angles, just as the t heory of translation lea<ls to the measurement of distance

(Sec. 8-4). In fact, rotations about a point induce project!vities (resembling

translal ionsf) on the line at infinity.

* von SlJiudt (llcf. 40, p. ^204, §337).

f For this dcvelopnuml., seo (’oxeter (llcf. 0, Chap. V^), For further results on con-

gruent transformations, .see (’oxeter (Ref. 7, (’hap. III).
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EXERCISES
1. Show that our definition of a congruent transformation is redundant,

since any point-to-point correspondence that preserves length also preserves

collinearity.

2. Show that the product of reflections in two parallel lines is a translation

through twice the distance between the lines.

3. Deduce from 9-66 that any product of three reflections may be regarded

as the product of a reflection and a half-turn. (It is interesting to compare this

with a rotation, which is the product of two reflections, and a translation, which

is the product of two half-turns.)

4. By a second application of 9 '66, show that any product of three reflections

may be regarded as a glide reflection: the product of a reflection and a transla-

tion that commute, the translation being along the axis of the reflection.

9*7 Foci. Let us now return to the theory of conics and define

foci by means of a property noticed by La Hire.* A focus of a conic is

a point at which the involution of conjugate lines coincides with the

involution of perpendicular lines. For instance, the circle has a focus at

its center. (It remains to be seen whether such a point exists in any

other case.) Since the involution of perpendicular lines through a point

is elliptic:

9*71 A focus is an interior 'point.

(Any tangent that might be drawn through it, being self-conjugate,

would have to be self-perpendicular.)

If the center is a focus, the conic must be a circle. If not, let 0 be

the center and F a focus. Then OF is an axis; for the chord through F
perpendicular to OF, being conjugate to OF, is bisected by OF.

9‘72 If there are two foci, their join is an axis.

Proof: The lines through two foci F and F', perpendicular to their

join FF', are both conjugate to FF'. Therefore the pole of FF' is at

infinity, that is, FF' is a diameter and, consequently, an axis.

It follows that any foci which exist must all lie on one axis. In the

case of a hyperbola this must, by 9-71, be the transverse axis. To
establish the existence of foci (one for a parabola, one for a circle,

two for a hyperbola, and two for an eccentric ellipse), we shall describe

a construction for them, making use of 6-57 (the dual of Seydewitz’s

theorem) as applied to a triangle TT'U or a'ah, whose vertices T and

T' are joined to C (on AA') by conjugate lines p and p', as in Fig. 9*7a.

* For the present treatment, see von Staudt (Ref. 40, p, 208, §345) and Reye (Ref. 31,

p. 155).
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In the case of a parabola, we take a' to be the line at infinity, a the
tangent at the vertex Ay and h an arbitrary tangent (as in Fig. 9-7b),

so that any point C on the axisAA' is joined toT = a‘ h and T' = a' ' h

Fig. 9-7a Fig, 9-7b

by conjugate lines. Then C will be a focus if these lines are perpendicu-

lar; hence we have the following construction:

9*73 To construct the focus F of a parabola^ let any tangent h meet the

tangent at the vertex in T, Through T draw p perpendicular to b, TheJi p
meets the axis in F.

There is only one focus, for any focus would be joined to T by a line

perpendicular to b.

In the case of a hy|>erbola, we take b to be an asymptote, while a

and a' are the tangents at the two vertices A and A' (as in Fig. 9*7c),

so that a!iy point C on the transverse axis AA' is joined to T = a • b

Fig. 9-7<’ Fig. 9-7d

and T' ~ a' • b by conjngn.te lines. Then f ' will be a focus if these

lines are perpendicular. Hence:*
9-74 To construct the foci F and F' of a hyperbola^ let either asymptote

meet the tangent at either vertex in T. Then the concentric circle through T
meets the transverse axis in F and F'.

*Holgate (Ilcf. ‘21. p. ‘2-20).
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In the case of an ellipse, we take h to be the tangent at one end of the

minor axis (or any other tangent not parallel to the minor axis), while

a and a' are the tangents at the ends of the major axis (as in Fig. 9'7d),

so that any point C on the major axis is joined to T = a ' b and
T' — a' • bhy conjugate lines. Then C will be a focus if these lines are

perpendicular. Hence:*
9*76 To construct the foci F and F' of an eccentric ellipse, let either

of the tangents parallel to the major axis meet the two tangents parallel

to the minor axis in T and T'. Then the circle on TT' as diameter meets

the major axis in F and F'.

To make sure that this circle will meet the major axis, we observe that its

radius BT — OA is greater than BO; therefore the center 0 of the ellipse is

interior to the circle, and AA' is a secant. If we interchanged the roles of the

major and minor axes, we should have a circle of radius OB that would fail

to meet a line distant OA from its center. Thus there are no foci on the minor

axis (in real geometry)

.

EXERCISE
Let c be a variable line through a fixed point and C its pole wo a given

polarity. Prove that the line through C perpendicular to c envelops a parabola.

9*8 Directrices. The polar of a focus

is called a directrix. Before considering

the general conic, let us establish two in-

teresting properties of the directrix of a
parabola.

9*81 Perpendicular tangents to a parab-

ola meet on the directrix.

Proof: Let a and a' be the tangents to

a parabola from a point U on the direc-

trix /, and let these meet the tangent at

the vertex in T and T' (Fig. 9-8a). Since

the focus F is conjugate to U, 6-57

shows that FT and FT' are conjugate;

therefore they are perpendicular. But FT
is perpendicular to a, and FT' to a'. Hence FTUT' is a rectangle,

and a is perpendicular to a'. Since any other tangent perpendicular

to a would be parallel to a' (which is impossible), this completes the

proof.

* Apollonius (Ref. 1, p. 424, lib. Ill, prop. 45).
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9*82 The orthocenter of a triangle circumscribed to a parabola lies on
the directrix.*

First Proof: By the dual of 6*73, applied to the quadrangle formed
by the sides of the given triangle and the line at infinity, the tangents
to the parabola from the orthocenter S are a line pair belonging to the
same involution as the lines joining S to the pairs of opposite vertices
of this quadrilateral (which are the vertices of the triangle and the
points at infinity on the opposite sides). Since these pairs of lines are
perpendicular, so are the tangents.

Second Proof: Let abc be the triangle and o the line at infinity.

Applying Brianchon’s theorem (our 7-22) to the hexagon abcc’oa',

where c' and a' are the tangents perpendicular to c and a, we conclude
that the three lines

(a-b)(c'-o), (b-c)(o'a'), (c - c'){a - a')

are concurrent. The first two are altitudes of the triangle, and the third

is the directrix of the parabola.

jBj

f

I>

Fig. 9-8b

We come now to Pappus’s celebrated construction for a conic as the

locus of a point whose distance from a fixed point F is e times its dis-

tance from a fixed line /, where e is a positive number called the

exx^entricHy.

To establish this construction, let F be a focus,/its polar,A the vertex

between F and/, li any other point on the conic, T the pole of t == AB,
and P ~ f ' t the jjole of FT, as in Fig. O-SB.f Now, FT and FP, through

*Th i.s theorem i.s due l.o Steiner, the first proof to Holgate (Ref. 21, p. 209), and the

second to J. C. Moore (see Salmon, Ref. 87, p. 247). Tt has seemed worth while to

include both, beenusc they arc so neat.

t Heye (Ref. 31, pp. 1.'59-1(50, slightly .simplified).
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the focus Fy are conjugate and therefore perpendicular; also, they a.r*c^

harmonic conjugates wo FA and FB (by 6‘41, applied to the conjug^^-^"

points FT • t and P on AB). Hence, by 9*53, they bisect the anglt^^

(AFB). The circle through F with center B will meet FP again irx ^
point C such that BC = BF, whence, by 9-57,

(BCF) = (CFB) = {AFC)y that is, (BCP) s (AFP)

which shows that BC is parallel to the axis AF. Hence, if Ai and
are the points where AF and BC meet /,

CB __ FA
BBi AAi

Calling this ratio e, we have FB = CB = eBBi.

EXERCISES
1. Prove that the sum (or difference) of the two focal distances of a varia,l>lc'

point on an ellipse (or hyperbola) is constant.

2. Prove that e < 1 for an ellipse, e = 1 for a parabola, e > 1 for a hyper-
bola, and e = for a rectangular* hyperbola.

3. Show that the conics which have a given point for focus and a given liixe

for corresponding directrix form a self-dual system.

4. Prove that the orthocenters of the four triangles occurring in a quadri-
lateral are collinear.



CHAPTER 10

CONTINUITY

The purpose of this chapter is to show how, in the presence of the

axioms of incidence and order, one very simple statement about limits

will suffice for the derivation of all the celebrated properties of the
one-dimensional continuum, including the axioms of Archimedes and
Dedekind, and Enriques’ theorem (our 3-51). This treatment may be
regarded as the geometrical counterpart of Weierstrass’ theory of irra-

tional numbers.

10*1 An Improved Axiom of Continuity. Our development of real

projective geometry began with five axioms of incidence (2-21 to 2-25,

or 2-31 to 2-35) and six axioms of order (3T1 to 3T6). These were
sufficient to establish many interesting theorems, such as 3-21 and
3-33. But before we could prove that a projectivity (as defined by von
Staudt) is an ordered correspondence, we had to introduce a twelfth

axiom, 3-51, of a decidedly complicated nature. The corresponding
statements in other books arc no simpler, except when algebra is used
and a direct apjx'al is made to the system of real numbers. The follow-

ing purely geometrical axiom 10-11 is so simple that it requires only
eight words. However, two of the wor<ls, monotonic and limit, must be
carefully defined.

A sequence of points A a, Aj, An, ... is said to be monotonic if

AvtAn//Auin-^r\ for cvcry integer n > 1. (This just means that we have
infinitely many points, arranged in cyclic order on the line.) The
existence of such a sequence is ensured by Axiom 3-11.

A j)oint M is called a limit of this se(|uence {.!„} if it satisfies the

following two conditions:

(1) For every integer n > 2, AiAn//AoM.
(2) For every ])oint P with A\PI(AiM, there exists an r/. such that

AxAJ/PM.

The above definitions arc complete, but the following remarks
(along with Fig. 10-1 a) will perhaps help to clarify them. Regarding

187
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Aq as a kind of barrier, let us say “X precedes F” and write X -< F,

if

S(.4oXF) = S(AoAU‘2)

and again if F = Aq. (The transitivity of this relation is a consequence

of our axioms of order.) Then the sequence {An} is monotonic if

•AQ Aj A2 Ail

Fig. 10-lA

-< ^2 ; and the two requirements for a limit M are as

follows

:

(1) The points ^ 2 , . . . all precede M.
(2) Every point that precedes M precedes some An-

We are now ready for the axiom

:

10*11 Every monotonic sequence of 'points has a limit.

We see at once that this limit is unique. For ifM and M' are two such

points, let M' precede M. By (2), M' precedes some An\ but by (1)

every An precedes M\ Thus the assumption iif' -< M leads to a con-

tradiction; similarly, so does the assumption M < M'

.

10*2 Proving Archimedes’ Axiom. In order to identify the real

projective line with the one-dimensional continuum described by
Cantor, we must examine various properties of the continuum and see

whether we can deduce them from our axioms. For instance, the

property of density, or internal convexity, is a consequence of Axiom
3*11. Defining segment as in Sec. 3*2, we may express this property as

follows

:

10*21 Every segment contains a point.

It follows that any segment contains infinitely many points.

A subtler property is what Hilbert* called the axiom of Archimedes
(though it might more properly be ascribed to Eudoxus). He expressed

it in affine terms, as follows: Let Ai he any point between A and P.

Take points Ai, A 2, . . . so that

AA\ = A 1A 2 = A 2A 3 = • • •

Then there exists a positive integer n such that P lies between A and A„.

Referring to Fig. 8*4a, we see that

B:(MAi, AA 2), H(ilf^ 2 , AiAs), . . .

* Ref. 19, p. 25.
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whence, by 3-21, MAx//AA^, MA^/IAxAz, . . . , i.e.,

S(MAAi) = S(il/.4x^2) = S(ilf^2^3) = • • •

Thus the sequence {.!„} is monotonic, the projectivity

/j s
MAAiX ^ MBBxY ^ MA^A^X'

(Fig. 10-2a) is direct, and S(M^Z) = S(ilf.4xZ'). Using BY instead
of /i>S, we have similarly

S(il/.4/li) = S(1/.YX')

ss

By 10-11, the inonotonic sequence {/1„} has a limit. The axiom of
Archimciles asH<n-ts that this limit is ])reciscly M. In other words:

10-22 If 1 1(d/

A

.1 „_.i. I „+i) for all positive integers n, then M is the

limit of the sequence {.1„|.

Proof: If tin* limit, is not il/, we can identify the monotonic sequence
il/.4.'li . . . willi IIk^ .li.lo.'la . . . ol Sec. 10-1. Then the limit must
be some i)oint P' sucli that MAJ/AP'. We naturally express this rela-

tion as An < P' -< M. Since S(il//U4x) = we have also

-1 ^ A'. Now construct the point P'H - MB, which projects from R
into P (so that tin* projt^ctivity .V — X' would take P to P', as in

Fig. 10*2n). Siiu-c P prec(‘d<‘s the limit /*', there must be an An between
P and P\ and a consc<|u<'nt .bi-i i

between P' and Jl/. Thus P' precedes

.4„x-i, contradi<-ting onr assumption that P' is the limit of the .d.’s.

ricnce there cannot in fact be a limit different from M.

10-3 Proving the Line to Be Perfect.* The points A, Aj, A^, . . .

of 10-22 lorm what, is sometimes called a harmonic sequence. This is

part ol Mobius’s harmonic neU or net of rationality, which may be
described as t he smallest, set of points that contains, for every three of

* Ilusscll (Ilof. :{/>, p. KKJ; Ilpf. :J(5. p. \ij)l). .\ range is said lo be perfect if it satisfies

IQ- 11, ^0•‘^l, and lo yi.
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its members, the harmonic conjugate of each wo the other two. Any
three points on the line lead to a harmonic net by repeated harmonic
constructions, and it is easily seen* that the same harmonic net is

equally well determined by any three of its points.

Cantor’s continuum is not merely dense (in the sense of 10-21) and

closed (in the sense of 10-11) but also “dense in itself”: every point is

the limit of a sequence. In particular:

10*31 Each 'point is the limit of some 'monotonic sequence of points

belonging to a given har'tnonic net.

Proof: It is a corollary of 10-22 that any point of the given harmonic
net is the limit of such a sequence; for we can construct the harmonic

sequence {An} of 10-22 from the three points ilf. A, Ai that determine

the harmonic net. Accordingly, let us take a point not belonging to

the harmonic net and try to exhibit it as a limit.

Changing the notation slightly, let the given harmonic net be defined

by three points A, jB, <7, and let Z be a point not belonging to this net.

By 3-14 and 3-17, Z must occur in just one of the segments BC/A,
CA/Bt AB/C, say the last. For the sake of verbal economy, let us

employ the language of aflGlne geometry, regarding C as the point at

infinity on the line; e.g., instead of “the harmonic conjugate of C wo A
and J5” we say simply “the mid-point of AB.*^ This mid-point belongs

to the net and decomposes the segment AB (meaning AB/C )into two
parts, one of which must contain Z. That part is similarly decomposed
by its mid-point. We continue indefinitely in this manner, always

bisecting the part that contains Z, so as to obtain a contracting sequence

of segments, each containing the next and all containing Z. We name
such a segmentf LU in the order that makes AU//LB, so that

S{LUC) = S(A5C), which we write conventionally as X < U. The
lower ends L and upper ends U form monotonic sequences of points,

which, by 10-11, have limits M and N such that

L < M, N < U

Since L < Z < U, just one of the following four statements must hold

:

M = Z < N, M < Z < N, M < Z = N, M = Z = N

We shall establish the last of these four by showing that the assump-

tion M < N leads to a contradiction.

* Veblen and Young (Ref. 42, p. 85).

t We purposely avoid the notation LnUn, because any two consecutive segments have

one end in common, and we are interested in sequences of distinct points.
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Assuming M < N, let us construct points M' and N' so that

H(CiV, MM') and NN')

i.e.y so that N is the mid-point of MM' and M of NN'. (This means, in
effect, that the four points N', M, N, M' are “evenly spaced,” as in
Fig. 10'3a.) Since M and N are the limits of lower and upper ends, we

A Nr' Af N M' B—

^

r\ ^ ^ Q-- % n nB V L' u
Fig. 10-3a

can find a lower end in the segment N'M, and an upper end in NM'.
If these do not belong to the same one of the contracting sequence of
segments, choose the latter one of the two segments involved. We thus
obtain a segment LU such that

N'<L<M<N<U<M'
Now construct points L', V, U' so that

LL'), HCCF, LU), H(CiV, UU')

i.e.y so that M, V, N are the respective mid-points of LL', LU, UU'.
By 3-41 (applied to M and C, with X running from L down to N', as in
Fig. 10 -Sb), wc have L' < N; therefore L' < U. By 3-43 (applied to

L and C, with A” running from L' up to U, as in Fig. 10-3c), M < V.
Similarly, using f /^f/' instead of ///y, we find F -< N. Thusilf -<.V < N.
But in the contracting sequence of segments, the next after LU must
be either LV, with N < V, or VU, with F •< M. In either case we
obtain a contradiction. Hence, instead of M < N, we must have
M — N, and Z is in fact the limit of both sequences [L] and { 17]

.
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We see now that the line is dense (containing a point between any

two points), closed (containing the limit of each sequence) and dense

in itself (each point a limit). According to Cantor, still one more
property is needed before we can be sure that this continuum is strictly

similar to the class of real numbers. The final requirement is the occur-

rence of an enumerable “relatively dense” subset.* A set is said to be

enumerable if its members can be put into one-to-one correspondence

with the integers (or with the rational numbers) . A set of points is said

to be relatively dense on the line if every segment contains a point of the

set; in other words, there is not merely a point of the line between any
two points of the special set (which follows from 10-21) but more sur-

prisingly a point of the set between any two points of the line. This is

the geometrical counterpart of the arithmetical theorem that a

rational number can be found between any two real numbers.

Such an enumerable separation set is provided (for the real projec-

tive line) by a harmonic net. From the nature of its construction, this

is obviously enumerable. It is relatively dense since, by 10-21 and 10-31

:

10*32 Every segment contains a point of a given harmonic net.

This is known as the Liiroth-Zeuthen theoremf because Liiroth and

Zeuthen proved it independently in 1873, using a method which re-

sembles our proof of 10-31. However, they assumed not only 10-11

(and 3-41 and 3-43) but also Dedekind’s axiom, which we shall prove

in Sec. 10-5.

10*4 The Fundamental Theorem of Projective Geometry. The
essential steps in our proof of the fundamental theorem 4-21 were

3-51, 3-62, 4-11, 4-12. How will the procedure be altered when con-

tinuity is given by 10-11 instead of 3-51? The simplest way is to use

Pieri’s definition for a segment (Sec. 3-6) so as to obtain 4-11 without

any appeal to continuity. Then 4-12 will follow with the help of one

simple lemma:
10*41 If an ordered correspondence relates An to An, where {dnl is a

monotonic sequence with limit M, then [A'n] is a monotonic sequence

with limit M'.

Proof: Since Ai < Ai ' •
• <M in the sense S(i4o^i^2), we must

have

A'l < A'i
' ’ - < M’

in ^(A'oA'iAz). Hence {A'n} is monotonic, and its limit N' cannot follow

M' in the latter sense. On the other hand, if N' preceded M', it would

* Forder (Ref. 12, p. 14). This is called a median class in Russell (Ref. 35, p. 104).

t See Whitehead (Ref. 44, pp. 30-38), or Mathews (Ref. 25, pp. 43-46).
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come from a point N separated from M by some An, implying

< A'^ < M'

whereas every A'^ should precede the limit iV'. Hence in fact N' must
coincide with M'.

To prove 4)*1S, we recall that a projectivity is a correspondence that

preserves the harmonic relation. Thus, if three points are invariant,

the whole harmonic net determined by those three points must be

invariant. Hence, by 4*11, 10*41, and 10*31, ever^ point is invariant.

10*6 Proving Dedekind’s Axiom. Dedekind’s axiom may be
expressed as follows:

10*61 I or every division of all the points of a given segment or interval

a into two nonempty sets Rl and Ra, such that every point of Ri precedes

every point of R2 , there exists a point M in a. which has the property that

every point of a preceding M belongs to Ri and every point of a following

M belongs to II 2 .

In other worsts, if L < U for every point X of the lower set and every

point U of the upper, then one of the two sets contains a dividing point

iM such that L < M < U, except that either L or U might coincide

with Af.

The proof closely resembles that of 10*31. Let a be AB/C or ABfC,
and consider its mid-point, i.e., the harmonic conjugate of C wo A
and B. Call the mid-point X/ or U according as it belongs to Ri or R2 .

Similarly bisect LB or A U, as the case may be. In this manner we
obtain a contracting sequence of segments, each having one end in Ri
and the other in R;i. We see, as before, that the lower ends and upper

ends have the same limit ill, which is Dedekind’s dividing point.

10*6 Enriques’ Theorem. Wo are now ready to prove the theorem

that we regarded as an axiom in 3*.51. We take first the case when the

correspondence is direct:

10*61 // a direct correspondence relates an interval ABf (1 to an
interior interval A'B'j(\ then the latter contains on invariant point M
such that there is no invariant point between A and M {in A B/C).

Proof: HA is invariant, ilu'ro is no more to l)e saitl: M coincides with

A. If not, suppose A is related to another point A\ A' to A", and so on.

Then the iterated c*orr{‘spon<lcncc provides a rnonotonic sequence

AA'A" . . . , vvlio.se limit Af is invariant by 10*41 (applicil to the

sequences AA'A" . . . an<l A'A"A'" . . .). A point between A and

M cannot he invariant. For if it coincides with some it is related
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to the diflPerent point and if it lies in a segment its

corresponding point lies in the different segment

This is fairly simple. The difficult case (because iteration cannot

help) is when the correspondence is opposite:

10*62 If an opposite- correspondence relates an interval AB/C to an

interior interval A'B’jC^ then the latter contains an invariant point.

Proof:* Assuming that there is no invariant point, we derive a con-

tradiction by the following argument: We use Dedekind '’s axiom 10*51,

taking the lower set to consist of those points of ABjC which precede

their corresponding points, while the upper set consists of those which

follow their corresponding points. These sets are easily seen to have
the requisite properties. First, the sets are not empty; for since B' < A'>

the lower contains A and the upper B. Second, if L precedes its corre-

sponding point L' while U follows ?7', L must precede U ; for otherwise

we should have U' -K U < L < X', so that LU and L'U' would have
the same sense. By our assumption the dividing point 31 is not invari-

ant but related to a distinct point M'.
Since AL and A'L' have opposite senses, any point X of the lower

set satisfies A < L •< L' < A'

.

Thus A', following every point of the

lower set, must belong to the upper set. Similarly B' belongs to the

lower set.

Now consider a fixed point X between A and 31, and a variable point

X between X and M, so that A -< X -< K 31

.

Since A' belongs to the
lower set and the correspondence is opposite, we have X -< X' -< L'

.

Thus X' follows every point X that precedes 31, and hence either follows

or coincides with 31.

If 3[' precedes 31 (so that A < 31' < M < A'

,

or possibly
A -< 3d' < 31 = A'), then every point L' between 31 and 31', being
also between A' and 31', comes from some point X between A and Af

,

whereas we have just seen that any such X yields an L' which does not

precede 31. Hence M' cannot precede 3f.

Similarly, by supposing 31 < Y <. U < B for a fixed ZJ and variable
Y, we find that TJ' either precedes or coincides with 31, and deduce
that 31' cannot follow 31.

Thus, finally, 31' — 31, contradicting our assumption that no point
is invariant. Therefore some point must be invariant (and it follows,
as in Sec. 3*5, that the invariant point is unique).

* Cf. Enriques (Ref. 11, pp. 71-75).



CHAPTER 11

THE INTRODUCTION OF COORDINATES

In Chap. 10 we discussed many properties of the real projective line.

But there remain certain questions that would be difficult, if not

impossible, to answer without using the concept of a coordinate or

abscissa. For instance, how can you be sure that a harmonic net does

not exhaust all the points on the line?

We saw, in Sec. 8-4, that pairs of points on the affine line belong to

an involution if their algebraic distances from a fixed point on the line

have either a constant sum or a constant product. The question now
arises: What is the projective counterpart of this affine statement?

More precisely: What projective entities can be added or multiplied?

One answer was given by von Staudt,* who used sets of four points,

which he called Wiirfe (i.e., “throws’’ or “casts”). Hessenberg, in

1905, simplified that treatment by fixing three of the four points and

operating with the remaining one. Instead of adfling or multiplying

segments OX, as in the affine line, we now add or multiply points X in

the presence of three fixed j)oints, which play the role of the numbers

0, 1, oo. (Anyone familiar with the vectorial approach to analytic

geometry will understand how a vector OX and its end point X are

for many purposes interchangeable.)

Following O’Hara and Ward,t we develop this theory “in one

dimension,” using elementary properties of involutions (instead of con-

structions involving arbitrary ])oiiits outside the given line). Although

this method obscures Hilbert’s famous discovery of the connection

between Pappus’s theorem and the commutativity of multiplication,

it has the advantage of allowing the range of points to be on a conic

just as well as on a line. We shall see, in Figs. HTa and 11-2a, how
very easily the sum or ])roduct of two points on a conic may be

constructed, t

* Ref. 41, pp. 166-194.

t Ref. a6, pp. l.W-156. ( f. Vehlen ami YonnK (Ref. H, pp. 141-156).

t Ref. 4'2, p.

145
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The chief novelty arises in Sec. 11-8, where we introduce two-

dimensional homogeneous coordinates. The use of a conic makes

it unnecessary to mention either cross ratio or nonliomogeneous

coordinates.

11*1 Addition of Points. Relative to two fixed iioints 7\i and

on a given line or conic, we define the sum A -f- Ji of two arbitrary

points (on the same line or conic, but distinct from PJ) to be the

companion of Po in the hyperbolic involution

Thus ^ -h Po = and A A is the harmonic conjugate of Po wo A
and Pbo. The commutative law

A + B ^ B A- A

is satisfied immediately, and the equation .V -j- B — yi can be solved

by taking X to be the companion of B in (/i/*o)(P«,P„). In particular,

—B (such that —B + 7? = Po) iw the harmonic conjugate of B woPo
and Poo-

To establish the associative law

AA-iBA- C) == (A -f B) + f'

we observe that Poo is an invariant point of both tlio inv^olutions

(A B)(A A- B Po) and ((/ R) (R + T ./*o)

whence, by 4-73, Poo is also an invariant point of (.1 B + (')C ^ Ar B C).

Thus A and B A- C have the same sum as .1 A- B and

We now define — B Ar B, SB = 2B -H Ji, and so on. Since

* This method is due to Ale.\; Roseni)erg.
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(m — 1)B {m 1)B = mB + mB

each successive multiple (m + 1)S arises as tie harmonic conjugate of
(m — 1)B wo mB and P„.

The operation of adding B can be expressed as a projectivity. In
fact, the above definitions imply

P^Po(-B)A X PooPoB{~A) X P«>BPo(A + B)

If B is a fixed point (not Po or PJ, this combined projectivity is

independent of the choice of A, and hence it relates a variable point X
to X B. This still holds when X is P„, provided that we extend the
definition of addition* by declaring that, ii B ^ P^, P^ + B = P
By 3-21 and 3-32, the projectivity

11-11 P«P«(-P) -P„BPo

is direct. (In fact, since P„ is the only invariant point, it is parabolic.)
Applying it repeatedly to any point (other than P^), we obtain a
monotonic sequence. In particular:

11'12 The sequence of points

. . . -3/^, -2P, -7i, 7^,, B, 2P, 377, . . .

is monotonic.

In other words, the relation S(Zr77 w77PJ = S(Po PPJ holds if and
only if Ic < vi.

ICXEIiCISES

1. Derive 11-12 from the fact that mB and Poo separate (m ± 1)B.

2. Show that the sum of two points A and li on a conic may be constructed
as in Fig. 11 -1 a: . ( B inetds (lie tangent at Poo in N (the center of the additive

involution), and .1 -j- 77 is the j)oint where the line NPo meets the conic again.

Deduce that Poo + 77 — /’oo (77 7^oo)-

3. Derive the associative law for addition from Pascal’s theorem (our

7-21) appli(‘d to the hexagon A H C (A -b 77) /*o (77 + C).

4. Let P()B (Fig. 11-1 a or n) meet the tangent at Pto in Ni. Show that

tlie pc)int of contact of the secoml tangent from Ni is a point ^77 such that

^B + If
77 = 77.

Fhi.s f^mvcnlion cim be jusbhed l)y appealing to the degenerate involution

which relates every point (in pnrlienlar, Po) to
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5. Given the parabola in its familiar Cartesian form y = prove that the
point on it with abscissa a + & may be located by drawing through the vertex

(0, 0) the chord parallel to (a, a®) (6, as in Fig. 11 -Ic. Show how this agrees
with the formal addition of points on
the parabola.

11*2 Multiplication of Points.
Relative to three fixed points jPo»

Pi, P„, on a given line or conic,
we define the product A X B oi two
arbitrary points (on the same line
or conic, but distinct from Pq and.

PJ) to be the companion of Pi in
the elliptic or hyperbolic involution

(^P)(PoPJ

For example, A X Pi = A. The commutative law, AXB—BX^*
is satisfied immediately, and the equation X X B = A can be solved
by taking X to be the companion of B in (^Pi)(PoP^). In particular,

B~^ (such that B~^ X B — Pi) is the companion of B in the hyperbolic
involution (PiPi)(PoP^), whose second invariant point is —Pi, or
say P-i; thus B~^ is the harmonic conjugate of B wo Pi and P_i.

To establish the associative law

11*21 A X (B X C) == (A X B) X C

we observe that PoP„ is a pair of both the involutions

(A B)(AXB Pi) and (C B){B X C Pi)

whence, by 4-68, PoP„ is also a pair of (A B X C)(A X B C). Thus Ai
and B X C have the same product as A X B and C.

Since A~^ X X B X A = Pi, we have

A-^ X B-^ = (B X A)-^ = (A X B)-^

The operation of multiplying by B can be expressed as a projectivity.
By 2-71 and the definition of A X B,

PoP^PiA - P„PodPi - PoPJKA X B)

If P is a fixed point (not Po or Poo), this combined projectivity is inde-
pendent of the choice of A and hence it relates a variable point to
X X B. This still holds when X is Po or P^, provided that we exten<l
the definition of multiplication* by declaring that, if B ^ JP

* These conventions can be justified by means of the degenerate involutions

(Pofi)(PoPoo) and (PooP)(PocJ^o).
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Po X i? = Po and, if P Po, P^ X P = P^.

This suggests an alternative prool for the associative law 11’21.
Using the projectivity

11*22 PoP^Px X PoP.C

which relates every A” to A^ X C, we have

P„P«(y| X B)A X PcoP«Pi» X Po,PoC(P X C)

Thus A and P X (' hav'c tlu‘ same product as A X P and C.

Similarly, to prove the distributive law

11.23 (A X n + (/i X C) = (A + P) X O

we observe that, from the definition of A + P,

P^A /il\ X PJiA (A + P)
whence, by 11 *

PJA X C)(B X (')P. X P«(P X C){A X fO[(vl + P) X C]

This involution exhibits (.1 + P) X P as the sum of A X P and
P X P.

By repeat(Hl a,p])lieation of 1 1 -23 we see that, for any positive int(.ger
n, '«(/! X P) — (uA) X (•. In pjirlieular,

f>P = Pn X (, where/*,,, = nPi

If m is the greater of two positive integers tn and a, we have
— m(' + n(' -}- (m — //)f' — — m(' + wf ' = Po

whence — vi(’ H- //U = — (m — 'n)P', similarly

~7nP + (
— nC) ~ —{m + 7i)P.
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Accordingly, we may regard {—n)C as having the same meaning as

— {nC)

.

EXERCISES

1. Verify that (-A) X (-B) = AX B. {Hint: Use Sec. 4(5, Exercise 55.)

2. Show that the product of two points A and B on a conic may he con-

structed as in Fig. 11*2a; AB meets PoPco in N (the center of the multiplica-

tive involution), and A X P is the point where the line NPi meets tlie conn*

again. Deduce that Pq X B = Po {B 9^ Poo) and Poo X B = 2 (B ^ i ti)-

3. Derive the as.sociative law for

multiplication from Pascal’s theorciii

(our 7-21), applied to the liexag<>i»

ABC (A X B) P, (P X C).

4. Verify that the projeetivity

11-22 is direct if Po and P* <ln n<>t.

separate Pi and C {e.ff., if these point.s

are arranged as in Fig. 11-2a). In tl»is

case Po/’oo meets PiC in an cxterit>r

point, from which we can <lraw two
tangents to the conic. Show tlii»i-

their points of contact are ±6'^ su<*li

that C^ X = C.

5. Given the rectangular hyperl>olit

xy = 1 or y = .t:“h prove that tlu*

point with abscissa ah may be located by drawing through the vertex (1, 1 ) t

chord parallel to (a, a-^)(6, 6“*). as in Fig. ll-2c. Show how this agrees with

the multiplication of points on the rectangular hyperbola.

11-3 Rational Points. Defining

Pn ~ 1> P—n ” Pn, Pl/n ” 7n/n Tlil l/n, P—w/n ~ «i ji

we obtain a definite point Pa for every rational number a. We call P.t ii>

rational 'point and a its abscissa.

The addition and multiplication of such points agree with the acDli-

tion and multiplication of the corresponding numbers. For if a — Ic/ n

and h = mfn (where k and m are integers, while the common denomi-
nator n is a positive integer), we have:

Pa Pb = kPi/n 4" 77lP\/n = {k m^P \/n == P{k+m)/n ~ P,t-\-lt

Again, if a = k/l and b = min (where I and n arc positive integcu-.*-; )

,

PaXPb = Pic X Pl/l X Pm X Pl/n = Pkm X P l/l X P\,n = kiriPi.in

~ Pkm/ln J ttit

Moreover, the order of the points Pa agrees with the order of tln‘

rational numbers a. For to see whether Pa precedes or follows 1*h
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express a and h in terms of a common denominator, say a = h/n,

b = m/n, and observe where Pa and Pb occur in the sequence 11-12

with B — Pi/n- We conclude that

SiPaP^J = S(PoPiPJ

if and only if a < 6.

114 Projectivities. Setting B = Pb in IMl, we obtain a pro-
jectivity that relates a variable point P* to P^+b. Thus the transforma-
tion of abscissas

x' = X -jr b

represents a projectivity P* x which is parabolic if 6 0.

Similarly, setting C = Pa in 11-22, we obtain a projectivity that
relates Pj. to Pax- Thus the transformation

x' = ax {a ^ 0)

represents a projectivity P* — Pa*, which is hyperbolic if a ^ 1.

The product of these two elementary transformations is

1141 x' = a,r + 6 (a 0)

The third kind of elementary transformation

x'=I
X

represents the hyperbolic involution (PoP^)(PiP]), as in Fig. 11-2b.

By judiciously combining all three elementary transformations, we
obtain the linear fractional transformation

c. cx + d cx d

where c 9^ 0 and h 9^ ad/c. Idiese inequalities can be weakened to

ad 9^ be

for by setting c- — 0 (and d = 1) we obtain 11-41. Since P“^ = Po, we
can take care of the ])ossibility that ,r = co by writing the linear

fractional transformation in the two alternative forms

1142 , ax -f- h
X = ---j-—

cx -j- d

a + h/x

c + d/x

Another way of writing it is

exx' — ax + dx' — /> = ()

(or/ — he 9^ 0)
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The projectivity thus represented is an involution if x and x' are inter-

changeable, i.e., if — a = d. In particular, the involution with invariant

points Pa and Pb is represented by

xx' — ^(a + + x') + a6 = 0

Hence

:

11*43 The relation JJ.{PaPb, PcPd) is equivalent to

{a + 6)(c + d) = 2(a6 + cd)

EXERCISES
1. Show that the parabolic project!vity 11- 11, as applied to points on a

conic, has the tangent at Pgo for its axis.

Show that the hyperbolic projectivity 11*22 (with C 9^ Pi) has the secant

PoPfo for its axis.

3. Show that the projectivity 11*41 is hyperbolic except when a = 1, and
that it is direct or opposite according as a is positive or negative.

11*6 The One-dimensional Continuum. The various steps by
which we have derived the general rational point Pa from three arbi-

trary points Po, Pi, P«, may all be expressed in terms of harinonit*

conjugacy:

H(PiP^, P0P2), H(P,„P,„ Pm-lP.,+l), II(P,P«, P„,P_„.),

H(PiP_i, PnPi,„), H(P,„/,P^, Pc„.-l)/„P(„.+l)/n), TI(P.,P«, PaP^a)

Conversely, by 11*43, the harmonic conjugate of P,. wo Pa and Pi, is

another rational point Pd. Hence

:

11*51 The rational points Pa-, along with P^, form a harmonic net.

(For this reason, a harmonic not is sometimes called a net of ration-
ality.)

We are now ready to show how the remaining jioints of the range*
may be included in this algebraic treatment by defining irrational
abscissas.

Let any real number x be expressed as the limit, of a rnonotonic*
sequence of rational numbers a. By Axiom 10- 11 (which naturally hohls
on the conic just as well as on the line), the corresponding se<|ucnce of
points Pa has a definite limit, which we denote by P^.

Conversely, by 10*31, any given point on the line or conic may bt*?

regarded as the limit of a monotonic sequence of rational points. Th<-
corresponding sequence of rational numbers a is eventually monoton icr

in the algebraic sense (after possibly discarding some initial terms of
the wrong sign) ; thus it is either divergent or convergent. In the former
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case, the given point must have been in the latter, the limit of the

a’s is a real number x, and the point is P^.

The number x, whether real or infinite, is called the abscissa of P*.

Thus, when the three fundamental points Po, Pi, P«, have been assigned,

every point on the line or conic has a uniquely determined abscissa.

Since the number of real numbers is strictly greater than the number
of rational numbers,* w'e see at last why it is that the harmonic net

constitutes only an “infinitesimal part” of the whole range.

We can now remove the restriction to rational abscissas in Sec. 11*4.

With real numbers a, b, c, d, 11-42 is the most general projectivity;

fort PoPiPoo — PiPqPr is given by

x' = - q)^ + yjq - r)

{p - q)x + {q - r)

which is a valid transformation provided that jj, q, r are all different.

Hence, if a variable point P* (on a line or a conic) is projectively related

to Px' (on the same line or conic or another), then the abscissas x and

x' must be connected by a linear fractional transformation. In particu-

lar, the most general j)rojectivity preserving P^ is 11-41 (which takes

Po to Pb and Pi to Pa-i*).

Since P{PiP^Px — P^PaPJPax-, any construction by which P* is

derived from PoPiP^, will yield P„x when applied to PqPoP^. Thus Px
can be rcname<l Pax provided Pi is renamed Pa. (The new Pi is the old

Pi/o-) More generally, instead of regarding the transformation 11-42 as

a projectivity, we may equally well regard it as a consistent renaming

of all the ]ioints (without altering any of their geometrical properties).

Such renaming is called a change of scale.

We have seen (Sec*. IT4) that the general involution is

erx' — a(x x') — I) == 0 (ar -f- be 9̂ 0)

This reduc*c*s to x -j- .r' — Jc wh<‘n c- = 0, and to

(x — a)(x' — a) -h g ~ 0 (g 9^ 0)

otherwise. By a siin))h‘ change* of scale (namely, x —> x s/c or x -f- a)

these relations bc-cornc*

11*62 ;r -\- x/ == 0

and xx' + g = 0. The rorrncr, having invariant points Po and P„, may
be taken as the canonicnl form lor a hyperbolic involution. The latter

* Ru.s.s<>ll (lief. pp. S.'i .S(0.

t VebJen and Young (Ref. ]>. UW).
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is elliptic if gr > 0, in which case we can make a further simplification
by the change of scale x x^g. Thus the canonical form for an
elliptic involution is:

11*63 xx' + 1 = 0

EXERCISES
1. The harmonic net based on three collinear points A, B, C naturally con-

tains D, the harmonic conjugate of C wo A and B. Show that it does not con -

tain the invariant points of the hyperbolic involution {AD){BC). Hint: Tak-o
the abscissas of A, B, C, Z) to be oo, 1, 2, 0.

2. If to the harmonic net we adjoin such furtlier points arising from ever>'
set of four points already obtained, have we then exhausted all the points on.
the line?

3. Show how Sec. 7*5, Exercise 5, would enable us to express any elliptic^
involution in the form iPoPo>)iPiP-i), thereby justifying 11-53 immediately.

4. With any two points on a line (or conic) we may associate the quadrati<*
equation whose roots are their abscissas. If three point pairs form a qua<l-
rangular set (Sec. 4-7), prove that their equations

+ ejix + Ti = 0 (i = 1, 2, 3)
satisfy

Pi ri

P2 72 r2

pa 73 ra

Hint: If the point pairs belong to the involution

+ a(x- + x') — exx' — 0
we have

hpi — aqi — cxi = 0

11*6 Homogeneous Coordinates. Cliviui any five points of wlii<*li
no three are collinear, we can draw' a definite conic through thern, ta.k<‘
an arbitrary sixth point Pi on the conic, and naiikc two of tlic giv'<*n
points pQ and P^. Then the remaining three i)oinls have definite?
abscissas Xi, X2, x^; and a different choice of the sixth point Pi woiiI<i
have the effect of multiplying all of Xi, x^, .Tj by some number a.
Wg call Xi, X2 y Xz the cooTdvfiQtes ot the point Pea for the tTiont/ff

of refercTice PxJPxJPxz und unit poi7it P o. Erom the above remark >>;

we see that these coordinates arc quite definite, apart from the jx).*-;--

sibility of multiplying all three by the same constant j in other worcl."^,
they are homogeneous coordinates. We denote P„ by the symbol
(a?i, X2 i Xa), with the understanding that for any nonzero a, the symbol
(oxi, 0X2, ctXg) denotes the same point.
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The above definition implies that the numbers Xx, x^, xz are all

distinct and different from zero. We shall see later that this restriction

can be removed, except that they must not be all zero. In particular,

the name unit point will be justified when we have found the coordi-

nates 1, 1, 1 for Po-

rt should be noticed that to find the coordinates for a new point,

we generally have to start over again with a new conic. Moreover, we
cannot yet construct a point with given coordinates.

11*7 Proof that a Line Has a Linear Equation. By projecting the

points of a conic from a fixed point (on the conic) onto a line, we obtain

points on the line, which may be regarded as having the same abscissas,

referred to the projections of the fundamental points Po, Pi, P«,- In

particular, by projecting the points Po, P®,, P*., P*3 of Sec. 11-6

from Px, onto the line PxiPx, and from P*, onto Px^Pxn, we obtain points

whose abscissas on those sides of the triangle (left and right) are as

indicated in Fig. 11 ^a. Applying the changes of scale

to the rcspoclivo sides.

Fig. 1 1 -Tb.

Let any line tlirougli

Since

\v<‘ ol>tain the r<'vise<l abscissas indicated in

P^ meet these sides in the points Ui and Uo.
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the connection between and wg is of the form 11-41, viz., since tlx<*

values 0 and x^/x^ for ui correspond to the values x^/x^ and 0 for wa,

11*71 XiUi + — aJa = 0

We can fix this line by fixing the values of the two numbers %ix an< 1

«2 , which determine definite points on those two sides of the triangle'
in terms of 0, 1, <» . Now let the point vary on the line. This meari^i
that the numbers Xi, x^, Xz will vary; but they will eontiniie to satisf>^
11-71, which may thus be regarded as the equation of the line. Tlii.’-i

merely means that it is the condition for the variable point (.^i, x^, (C:0
to lie on the line.

The point of intersection of two such lines is obtained by solving?
the two simultaneous equations for Xx:X‘j>‘.Xz. In this way we
extend the definition of coordinates to points on the sides of the trianglo
of reference or on the lines joining the vertices to the unit point jPi»-

Thus the point marked Wg in Fig. 11 -7b is where the line 11-71 meet >!

another such line with a different ?/i, namely

(0, 1, u^)

e.g., the point marked 1 on that same side is (0, 1, 1). We now see th« t

the characteristic property of a point on the first side of the triangle of
reference is the vanishing of the first coordinate; hence the three sido.*^

have the equations

Xi = 0, a-g = 0, Xz — 0

Consequently the vertices, where these sides meet in pairs, are

(1 , 0 , 0), (0 , 1 , 0), (0 , 0 , 1 )

Setting = 0 in 11-71, we obtain the line n»X 2 — Xz = 0, whicrli
joins (1, 0, 0) to (0, 1, ?/g). This holds for all values of ?/» except, possibly*',
U2 = 1; accordingly, we extend the meaning of coordinates so as t< >

make it hold there, too. Thus the lines joining Po to the vertices of tli<^
triangle have the e<iuations

X2 = Xz, Xz — Xi, Xi — a-g

and the point Po itself is (1, 1, 1).

We now see how to obtain coordinates for any given point. Coti —
versely, given three real numbers Xi, x^, xz, not all zero, we can local.
the point (xi, Xz, Xz) as follows: If two of the coordinates are zero, til <3

point is a vertex. If one is zero, the point lies on a side; for exampK*,
(0, a;2 , Xz) has abscissa xz/xs referred to
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Po = (0, 1, 0), Pi = (0. 1, 1), P^ = (0, 0, 1)

If none is zero, we join (1, 0, 0) to (0, arg, Xs) and (0, 1, 0) to (a^i, 0, 0:3),

locating (xi, X2» X3) as the point where these joins intersect.

11*8 Line Coordinates. Finally, we restore the symmetry of the
three coordinates by writing H -71 in the homogeneous form

^1^1 4“ X2.X2 H” XzJCz = 0,

or

11*81 A- liCi -|- X2X2 -|- XzXz = 0

and we call the coefficients A t the coovdinatBs (line coordinates, envelope
coordinates, or tangential coordinates) of the line

[Xi, X2, X3]

Xhis device enables us to interchange points and lines in accordance
with the principle of duality. The equation 11*81 is essentially self-dual,

being the condition for the line [Xi, X2, .Y3] and point {xx, x^, Xz) to be
incident. If we fix the point instead of the line, it is the condition for a
variable line to pass through a fixed point; i.e., the point (jTi, x^, xz)
has the equation

X\\ 1 -f- .'r2A 2 4“ iCsA’^s == 0

and its coordinates are tlie cocffieicnts of A4, X2, A^ in its equation.
In jjarticuljir, the vt‘rtices of tlie triangle of reference and the unit
point have the ecpiations

1 A 2 0 , A 3 — 0, an<l Ai 4“ A 2 4“ Xz — 0

In terms of line coordinates, the si<les arc

[
1 . 0 , 0 ], [

0 , 1 , 0], [
0 , 0 , 1

]

and the lines joining the vertices to the unit point arc

[
0

, 1 ,
- 1 ], [- 1 , 0 , 1 ], [

1 ,
- 1 , 0]

EXK ltd tiES
1. Show that the unit line [1, 1, 1] meets the sides of the triangle of reference

in the ])oints (0, 1, —1), (--1,0, 1), (1, ~1, 0).

2. Show that tlie two points (0, 1, +.r) are harmonic conjugates wo (0, 1, 0)

and (0,0, 1). Deduci* the <*ou<htion .riA4 = .r-jXo = .r;{.Y;ifor the point (ri, ^2, rs)

and line [.V 1, .Vj, .Vul tti he trilinear pole and polar wo the triangle of reference.

3 . Verily the result of Exercise 2 without using harmonic conjugates, by
obtaining the <roordiuat(‘s of the various jjoints and lines in Fig. 7-7a, begin-
ning with A =

( 1 , 0 , 0 ), li = (0 , I, 0), C =
(0 , 0 , 1 ), and X = (r„ xa, Xz).



CHAPTER 12

THE USE OF COORDINATES

In Chap. 11 we saw how a system of coordinates is inherent in
synthetic geometry. In the present chapter we shall reverse the process,

building up the analytic geometry from first principles, and derivirifJt

the theorems (including the axioms) from properties of numbers.

shall find the analytic method enables us to solve some i>roblems moi-c’?

easily. On the other hand, it would be a grave mistalce to abandon tli<^

synthetic method, which is far more stimulating to one’s geometricsil

ingenuity.

12*1 Consistency and Categoricalness.* In Clui]>s. 2 to 7 and I O
we developed the geometry of the real projective plane as a logiciil

system based on the primitive concepts point, line, incidence, ftepard -

tion, and the twelve axioms 2-21 to 2-25, JMl to 3-10, and 1011. This
system has two essential properties: it is consistent and it is calegorioal-

Before attempting to define those terms, lot us romark that the proper-
ties are tested by means of modelif, wherc‘in the primitive concept s,

instead of remaining undefined, are tlefiiiotl in terms of concoy>ts
sufficiently familiar to be taken for graiito<I. To (‘sta.l)lish the validil y
of a model, wc merely have to verify lliat t.lio given defiiiilions for tin*
primitive concepts enable us to prove the axioms.

When we say that a logical system is consliticnt, wc mean that it

cannot lead (by any chains of deduction, however long) to two cont rii-

dictory propositions. The existence of a single modc‘l suffices to esta.l)-

lish consistency; for any two contradictory results would iiTi]>ly

contradictory properties of the mo<lel, and the .absurdity would He*
manifest. The chief difficulty is to find an entirely satisfjictory rruxhd.
Many would be prepared to take for granted, as ii m.attcr of ex])<‘ri-

ence, the ordinary geometry of Euclid or the affine geometry that cjiii

be extracted from it. Then we can define ideal elements as in Sec. 1 - I*

* Cf. Veblen and Young (Hef. 42, pp. 1—(>). The relation Jiet\ve<*n .synlheti(! axol
analytic geometry has been very ably described by Hobson (Ref. IJH, (’hap. S; Ref. H t..

Chap. 19).

158
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and verify that the affine plane, plus its points at infinity and line at

infinity, forms a model for the projective plane.

Others might reject this model on the grounds that the space of

experience is only approximately Euclidean. Setting aside the question
as to whether a straight line is better approximated by a taut string

or a ray of light, they would argue that Euclid’s postulate of parallelism

(which is an essential part of affine geometry) can be tested experi-

mentally only in a neighborhood that is very small from the astronomi-
cal standpoint. Such persons might be prepared to take for granted the
local properties of ordinary space. Then a model for the real projective

plane is provided by the lines and planes through a fixed point in space.

These lines and planes represent the points and lines of the projective

plane, while incidence and order retain their customary meaning. This
model has the great advantage of symmetry: there is no “line at

infinity” to play a special role.

Still others might object that even this symmetrical model rests on
intuitive ideas of space that cannot be justified by purely logical means.

For them we must devise a model which every geometrical concept is

defined in terms of numbers. The validity of such an analytic model will

be verified in Secs. 12-3 and 12-4. Of course, there remains the question

of the consistency of the number system, but at that stage the geometer

delegates his responsibility to the algebraist.

When we say that a logical system is categorical,, we mean that it is

unique, in the sense that any model is isomorphic with any other.

Thus a geometry is categorical if the entities which represent all the

points and lines in one model can be put into correspondence (one-to-

one) with those which rei)resent the points and lines in another model.

The results of Cha]). 11 serve to establish the categoricalness of our

system of real projective geometry. For they provide a definite naming

of all the points and lines by sets of three real numbers, and this naming

can be carried over into each model.

However, the whole problem of consistency and categoricalness is

connected with very difficult and <leep questions, which have lately

been investigated by philoso{>hers and logicians, notably Gddel. Any
adequate discussion would be beyond the scope of this book.

KX E lie ISE

Consider the following ino<lel for the geometry defined by the axioms of

incidence (I2-21 to 2-25) alone. Points arc the l.S symbols An, Au • • • , An;
lines arc the 13 symbols a-o, ai, .... nitj; Ai and a,- are incident if
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i — j ^ 0, 1, S or 9 (mod 13)

Deduce that the “geometry of incidence” is not categorical (Veblen).

12*2 Anal3rtic Geometry. We have remarked that the most satis-
factory way to establish the logical consistency of our axioms, withoiit
taking any geometrical ideas for granted, is by means of an algebraic
model. Such a model will now be described in detail.

A point is defined as an ordered set of three real numbers (a;i, Xz, xs)
not all zero, with the understanding that (Xari, Xxzy Xxa) is the same point,
for any nonzero X. Likewise a line is an ordered set of three real numbers
[Xi, X2, Xs], not all zero, with the understanding that [XXi, XX2, \Xsi

is the same line. For brevity we speak of the point (x) and the line [AT] -

This point and line are said to be incident (the point lying on the line
and the line passing through the point) if and only if

12*21 [xX] = 0

where
{xX} = XiXi -f" 372X2 “h 373X3 = 2x,:Xi

Any figure or argument can be dualized by interchanging small and
capital letters, round and square brackets.

If (x) is a variable point on a fixed line [X], we call 12-21 the equatiorh
of the line [X], meaning that it is the necessary and sufficient condition,
for {x) to lie on [X]. Dually, if [X] is a variable line through a fixed
point (ic), we call the same relation the equation of the point {x), mean-
ing that is the condition for [X] to pass through {x). Thus the coordin-
ates of a line or point are the coefficients in its equation (see Sec. 11-8) -

The three points (1, 0, 0), (0, 1, 0), (0, 0, 1) and the three linew
[1, 0, 0], [0, 1, 0], [0, 0, 1] form a triangle called the triangle of reference
(see Fig. 12-2a). The point (1, 1, 1) and line [1, 1, 1] are called the urhit
point and unit line. We shall see, in Sec. 12-5, that there is nothing^
geometrically special about this triangle and point and line, apart
from the fact that the point and line are trilinear pole and polar wo tho
triangle.

By eliminating Xx'.Xz’.Xz from the three equations

{xX} = 0 , {yX} = 0, {zX} = 0

we find that the necessary and sufficient condition for three points*
(^)> (.y)y (2) to be collinear is

Xi Xz 373

yi 2/2 2/3

2i 22 Zs

12*22
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This condition is equivalent to the existence of numbers X, ju, v, not
all zero, such that

+ J'Zi = 0 (i = 1, 2, 3)

If {y) and (z) are distinct points, X 0. Hence the general point
collinear with (y) and (z) is (m2/i + vzi, fxy-, + vzz) or, briefly,

(fxy + vz)

When fi 0, this is the point (z) itself. For any other position, we can

allow the coordinates of (?/) to absorb the m. and the collinear point is
simply

(?/ + vz)

If we arc concerned with only one such point, we may allow the v to
be absorbed too; thus three distinct collinear points may be expressed
as (;v), (z), (;v + z). However, this last simplification cannot be effected
simultaneously on two lines if thereby one point would have to absorb
two different jiarameters,

lo illustrate these ideas, let us find the harmonic conjugate of
(y + s) wo (?/) and (z). Referring to Fig. 2-5a, let the points

Q, R
be

(?/)> (s), (y + s), (x), (x + y)

Then P, on both QC and RB, must be (a: + ?/ + s); S, on both QB an<l
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PA, must be (a: + z); and D, on both AB and RS, must be (2/ z).

Hence, replacing Zi by vzi :

12*23 The harmonic conjugate of (y + vz) wo (yj and (z) is {y — vz).

Since this result is independent of (x), we have here an analytic proof

of a*51.

Dually, the condition for three lines [X], [F]> [-Z] to be concurrent is

12-24

Zi X2 Xz
Yt Ka Yz

Zi Z2 Zz

= 0

The general line concurrent with [F] and [Z] is [/jlY + vZ], any such line

except [Z] can be expressed as

[Y + vZ]

and its harmonic conjugate wo [F] and [Z] is [}^ — vZ].

EXERCISES
1. Show that the line joining (1, 0, 0) to (a;i, xz, xz) is [0, aig, — 0: 2]. Where

does it meet [1, 0, 0] ?

2. Name three lines through the point (
— 1, 0, 1). Find their points of inter-

section with [0, 0, 1].

3. If the triangle of reference is the diagonal triangle of a quadrangle having

(1, 1, 1) for one vertex, where are the other three vertices? (Cf. 2*42.)

4.

* Show that the lines [X] and (?/)(z) meet in the point

({zX}y - {yX]z)

Hint: What is the condition for {y + vz) to lie on [A'^]?

12-3 Verifying the Axioms of Incidence. To show that this

analytic geometry really forms a model for the synthetic geometry

developed in Chap. 2, we must verify that Axioms 2*21 to 2*25 are all

satisfied.

The first four are easy. The point (1, 0, 0) and line [1, 0, 0] are

certainly not incident. A line [Xi, X2 , X3] with X 1X2X3 0 is inchlent

with three points such as (0, X3, —

X

2), ( —

X

3 , 0, Xi), (X2 , — Xi, 0);

[0, X2 , X3] is incident with (0, X3, —

X

2), (1, X3 , —

X

2), (1, 0, 0); and

so on. Two points (y) and (z) are incident with the unique line 12*22 or

2/2 2/3 2/3 2/1 2/1 2/2

'

2!2 Z3 S3 21 Zl Z2

* Graustein (Ref. 14, p. 70, Exercise 5). The idea of using capital letters for line co-

ordinates is due to G. T. Bennett.
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and two lines [F] and [Z] are incident with the point 12-24 or

/|F2 Fs Fs Fit Fx r,\\

VI Z2 F3 r Zz ’ z^ z, \j

As for Desargues’ theorem (aiir 2-25), let P, Q, JR, and the

point of concurrence be (.r), (?/), (s), and (u). Then there is no loss of

generality in taking P', Q', R' to be

(ar -f -m), (y + w), (s + m)

The point QR • being eollinear with (y) and (s) and also with

(y d- y) + ^0) be (//
— s); similarly RP • P'P' and

PQ ' P'Q' are (s — x) and (x — y). The collinearity of these three

points follows from the identity

(y - s) + (s - x) + (a: — 2^) = 0

EXERCISES
1. Find coordinates for the point of intersection of [0, 1, —I] and

[
— 1, 1, 1]

(Fig. 12-2a).

2. Prove Dcsargucs’ tlieorein as applied to the triangle of reference and

(A-i, 1, 1)(1, /.-‘x, 1)(1, 1, /-a).

3. Work out See. 4-3, Excrei.se 3, taking AjAs-'is to he the triangle of refer-

ence while B\1hR-i is (/'i, 1, 1)(1, k-i, 1)(1, 1, k^. Obtain kjeje^ = 1 as the

condition for liiu-s [0, —1, /-«], [/^^•^, 0, —1], [
— 1, /ri, 0] to be concurrent.

4. What further eonditiou is re(iuircd in Exerei.se 3 if also the line.s A\Iii,

AiB'i, AzTh arc concurrent (so that the two triangles are “quadriiply perspec-

tive”) ?

12-4 Verifying the Axioms of Order and Continuity. "J'o .show

that this analytic gt'oin<d,ry .siiiricn^s for a rno<lel of the real projective

geometry of (diap. 3, vve still hav<‘ to verify that Axioms 3-11 to 3T6
and 1011 arc .satislie<l when .separation is suitably defiiie<l. The defini-

tion wc shall adopt is as follows. DcMioling juxints /I, B, (J, D by (a),

(6), (c), (d), where

r.; — (li + fihi and di = a; -f- vbi

we say that AB(jCl) if and only if

~ < 0
y-

(so that ju and v have opposite signs), Wc .saw, in Sec. 12-2, that any
third point colliiK'ar with two <li.stinet jxiints (n.) and [h) <*an be

expressed as {a vb) whore v 5^ (); lienee the above ox])r(*.s.sif>n.s for

Ci and di merely mean that ( and D are eollinear with A and B.
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Possibly the criterion v/fx <i 0 seems arbitrary; but it is really forced upon
us by Pieri’s definition for a segment (Sec. 3-6). According to that definition,

the segment (ACB) is the locus of the harmonic conjugate of C wo two points

(a + \b)i where X takes all values except 0. Since C is (c) where

, 7
(X -|- /x) (tti + \bi) + (X — ju) (a,- — X6i)

Ci —“ CLi 1 ~2X
'

its harmonic conjugate (x) is given by

a;< = (X + /i) (at + X6i) — (X — /i) (at — \bi) — 2/i

^
/ X^ \

i.e., the harmonic conjugate is fa + — 61, where X varies while /i is fixed. Since

X is real, the coefficient XV/x takes in turn every value having the same sign as /x.

Hence the supplementary segment AC/li consists of all points (a + vb) for

which V has the opposite sign.

Axiom 311 is verified by taking v = —jx. The next two axioms arc
immediate. (Since v/p < 0, we cannot have /x = 0 or y = 0 or /u = v.)

To test 3-14, we observe that

CLi C^i fxbif di Ci (/r V^bi

Thus the three relations* CB/JAD y CA//BD, AB//CD mean

^<0
/X V p

one of which must hold whenever pv(p — v) 0.

As for 3T5, the relations AB//CD and CA//BE mean that C\ JO, K
are (a + pb)y (a + yb), (c + pa), where y/p < 0 and — p < 0. Since E

is (a H- /i6 + pa) or ^a + ^
the relation AB//DE means that

/X

(1 + p)*'
< 0

which is obviously true \i p/v <0 and p > 0.

S
To test 316, suppose ABCD ^ A'B'C'D'. We may take S, A\ IV

to be is), (a + /c,9), (6 H- \s)y and deduce

* Since Ci/y, = 6^ + di/y and Aijv = !>» + a,/*', the relation AB//CD is ec|nivalent
to BAHCD. This justifies our use of CB//AD in place of BC//AD.
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C' = A'B' CS = (a + + ju hTU)
D' = A'B' ‘ DS == {a A- Ks + V b + \s)

so that the relation A'B'f/C'D' means v/n < 0 again.

According to the definition in Sec. 10*1, a sequence of collinear
points

^0 — (3), Ai — {y). An = (y + Vnz) (n = 2, 3, . . . )

is monotonic if AqAu//

A

iAn+\ (for

A, = (.-

this condition amounts to vn/(vn+i

every n > 1). Since

\ Vn+l — Vn/

— Pn) > 0, or

which means that we have a monotonic sequence of numbers

t'l == 0, Vo, Vs, . . .

We know from analysis that such a sequence of numbers is either
convergent (to some limit v) or divergent. In either case the sequence
of points has a limit: (?/ + vs) or (s), respectively.

We have now completed the identification of our synthetic and
analytic geometries. Hut a lew lurthcr remarks arise naturally at this
stage. Comparing the above results (e.g., 12-23) with Sec. 11-5, we can
identify the i)arameter v with the abscissa of the point (y + vz), re-
ferred to fundamental points

0 = (?/), Pi = (7/ A- 3), = (a)

If ABC and .1 B b arc any two sets of three collinear points, we may
write

A — (a) f B — (b), C = {a -b b)

A' = (aO, B' =
(//), C' = {a' -f- b')

Then the analytic verification of the funclamentaj theorem 4-21 con-
sists in the observation that if ABCD - A'B'(^'D\ the abscissas of
D and D' agree:

D = (a -h vh) and />' = {a' -f- vh')

This parameter v is called the cross ratio of the four collinear points.
In the notation of Veblen and Young it is ^AB, DC).
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More generally, if A, 5, C, D are

(a), (6), (a + ju6), (a + vh),

we have DC) = v/p., or CD) = n/v. Thus the relation

ABCD X A^B'C'D' is equivalent to mAB, CD) = mA'Ji',
ABfICD is equivalent to CD) < 0,

and H(AB, CD) is equivalent to C-D) = —1.

Let [Z] be any line through C and [F] any line tlirough D, Then

faX} + n{bX\ = 0, {aV] + v{hY\ = 0
and therefore

fi _ {aXH^^Fj
I' {6X}{ar}

Following Heflfter and Koehler,* let us call this the cross ratio of tli<»
two points (a), (6) and the two lines [A'J, [Fj. In particular, the two
points are separated by the two lines if and only if the cross ratio is
negative.

One simple consequence of this theory is the analytic interpretation
of Theorem 3-81 as applied to the triangle of reference. If (a) and (/>)
are two points such that aia^bibi ^ 0, their cross ratio with the sidc-s
[1, 0, 0] and [0, 1, 0] is

* Ref. 16, pp. 120, 136.
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{aA"}
\
hY] _ ai&2 _ ^

{
6A"}{aF| 61^2 aj bz

Hence the two angular regions bounded by the lines a?i = 0 and a;2 = 0

are distinguished by the sign of xi/xz, or of XxXz \ and the four triangular

regions determined l)y the three lines Xi
~ 0 are distinguished by the

signs of XzXzy XzX\, XiXz. In the “interior” region containing (1, 1, 1)

the three coordinates Xi all have the same sign; but in the remaining

three regions one coordinate differs in sign from the other two (see

Fig. 12 -4a).

A similar distinction can be made as to the signs of the coordinates

of a line. If {arA"} = 0, the three products XiXi cannot all have the

same sign. Hence any line for which AriA'2X3 9̂ 0 must be exterior to

the region where the point coordinates have the same distribution of

signs as these line coordinates.

EXERCISES
1. Sliow that tlic three relations AB//CD, A7i//CE, AB//DE cannot all

hold simultaneously (cf. 318).

2. Prove in (h^tail that if lr„! is a clivergent monotonic sequence of num-
bers, the limit of the sequence of points (// + VnZ) is (s). Ilivt: Write {y + v„3)

in the form (z +

12'6 The General Collineation. Consider the t ransformation

12-61

where

Cij.r I + c, 2.1-2 + c, 3:1-3 =
+ czjA'i + Cay.Vj == Xcij-Xi

ii = 1 , 2 , 3 )

(j = 1 , 2, 3 )

^'11 <‘12 Ci3

0*2

1

C22 C23 = A 0

C:ii r .32 <^33

ion over tiie three values of ?! or

of those letters appears /.wice in the expression.) This transformation

leads from a point (.r) to a i)oint (x') and from a line [A] to a line [A^'].

Since

{x'X'l = :c, a; = :!:.ryA'; = {:rA'}

it preserves incidence; an<l since A 0, it is one-to-one. Hence it is a

collineation, as definccl in Sec. 41.

Solving the equations 12 ol for x/ andA'J, wc obtain the following

expressions for [X'] in terms of fA'] and for (x) in terms of (x')

:
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12-52

19 K9 I
+ <^^2^2 + CizXz = XCiiXi {i = 1, 2, 3)

I
0^- = Cyari + C,ixi + Czix', = (j = 1, 2, 3)

where Cy is the cofactor of c,,- divided* by the determinant A, so that

^CijCih ~

which means 1 or 0 according as j = h or j h (the “Kronecker
delta”). These solutions may be verified as follows:

SCyAT/ = SSCtfC^Z; = S5i*x; = A';.

“ SSOyCt^jflJfc “• Xj

Given a triangle (a) (6) (c), we may describe the position of any
point P by means of harycentric coordinates, defined as follows: If

P does not coincide with the vertex (a), it can be joined to (a) by a
definite line that meets the opposite side (b) (c) in a point (fib + vc)

.

Then P, being collinear with (a) and ()u6 + vc), may be expressed as

(Xci -|~ {jh H- vc)

The barycentric coordinates are these coefficients X, /x, v. The point
(a) itself is included by allowing both and v to vanish. By absorption

we may take any particular point not on a side of the triangle to have
X = /X = V = 1.

When {a)(Jt>)(c) and (a + 6 + c) are the triangle of reference and
unit point, (Xa + /xfe + vc) is (X, /x, v) and the barycentric coordinates
are the same as the ordinary coordinates. The collineation

12*63 x'i = ttiXi + biXs + CiXz

transforming the quadrangle (1, 0, 0)(0, 1, 0)(0, 0, 1)(1, 1, 1) into
(a)(6)(c) (a + 6 4- c), transforms (X, )u, v) into the point

(Xa /xb vc)

which has these same barycentric coordinates referred to the new
quadrangle instead of the old.

Since any quadrangle can be written as (a)(6)(c) (a -|- 6 + c), we
see from 5-12 that 12-51 or 12-53 is the most general collineation. The
condition A 0 or

ax 6i Cl

a2 62 C2 0

^3 63 C3

* Since the coordinates are homogeneous, there would be no harm in defining On to
be just the cofactor of Of;, without troubling to divide by A.
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merely expresses the requirement that the points (a), (5), (c) form a
triangle. Thus the equations 12*51 may be regarded either as a collinea-

tion shifting the points in the plane or as a coordinate transformation

giving a new name to each point.

Defining

A = {aX\, B = [hX], C={cX}

so that the points (a), (5), (c) have equations yf = 0, J? = 0, <7 = 0,

we find that the point (Xa -f- + vc) has the equation

\A -f- /xB + vC = 0

Thus the barycentric coordinates of any point are simply the coeffi-

cients of Ay By C when its equation is expressed in terms of the equations

of those points. The above remarks serve to justify Mobius’s “barycen-

tric calculus ” (so effectively used by Baker), where the general point is

denoted by

X/l -j- fiB -f- v(]

(with “= 0” omitted). In this notation our triangle of reference

(formed by the points A'l = 0, X2 = 0, Xz —
0) is simply XiXzXzt

and the point (x) is .rjA'i -|- xzX^ + xzXz. Thus

(xiy x>>, Xz) = 0, 0) -f- 0:2(0, 1, 0) + 0:3(0, 0, 1)

as in vector analysis. (In fact, if we think of the plane as lying in an

affine spac(‘, we- may interpret these symbols as vectors leading from

some fixed origiri outside the plane to the points considered; then the

expression XA i« a sum of vectors.) Historically, this

barycentrie calculus (1827) |>reeedcd Pluckcr’s line coordinates

(1828-1880). Von Slaudt’s synthetic approach to projective geometry
came later still, as we have s(*en. (Irassmann, a contemporary of

von Staudt, dev'(‘lop('(l a “calculus of extension” in which both points

and lines are represented as vectors: the vector ])ro<luct of two points

is their join, and the vector product of two lines is their intersection

(cf. Sec. 12-8).

One v*ery practical rule* enu'rges from this little <ligression. When
seeking an analytic ])roof for a. theorem concerning a triangle, we arc

justified in taking this as triaiigU- of reference; and any fixed point not

on a side of the triangle may be named (1, 1, 1). dhus Exercise 2 of

Sec. 12*3 would suffice for a ])rooF of Devsargues’ theorem (our

2*25) and Exercise 3 for a proof of Pappus’s Iheorein (our 4*31).

(This is far neater than the j)roofs of Pappus’s theorem given in
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most textbooks on analytic geometry.) For theorems involving ^
quadrangle it is often convenient to take the vertices to be (1, il,

so that the six sides are a:; ± a;,- = 0 {i < j) and the diagonal triangle

is the triangle of reference. Dually, a given quadrilateral may be takerx

to have sides [1, ±1» ±1] and vertices Xi ± Aj = 0.

The following special collineations will be found useful: a homol-
ogy with center (0, 0, 1) and axis [0, 0, 1],

12 *54: x'l — Xi, x'z = XHf a’a
= ~

and the elation with center (ci, c^, 0) and axis [0, 0, 1],

12*56 Xx = Xx CxXzj a’2 — H" 02^73, 2:3 Xz

EXERCISES

1. Give an analytic proof for Sec. 2*4, Exercise 1.

2. Find the collineations that transform (1, 0, 0)(0, 1, 0)(0, 0, 1)(1, 1, 1)

into the following quadrangles:

(i) (1, 0, 0)(0, 1, 0)(0, 0, l)(ai, tti, tta)

(ii) (-1, 1, 1)(1, -1, 1)(1. h -l)(h h 1)

(Hi) (0, 1, 0)(0, 0, 1)(1, 0, 0)(1, 1. 1)

(iv) (0, 1, 0)(0, 0, 1)(1, 1, 1)(1, 0, 0)

The last two collineations are periodic. What arc tlieir periods?

3. Find the collineation that interchanges (+1, 1, 1) and also intoi--

changes (±1, —1, 1) (cf. 5-31). Where are the center and axis of tlii.s

harmonic homology?

4. Give an analytic proof for the exercise to Sec. R-ii.

5. Find the elation with axis [1, 0, O] transforming (1, 0, 0) into (1, 1,' O)
(cf. 5-22). Where is its center?

6. Find the homology or elation that transforms the triangle of n*fcren<-':o

into (/ci, 1, 1)(1, h, 1)(1, 1, ^3) (cf. 5-24). WHien will it be an elation?

7. Express the following three collineations in terms of line coordina.

Find their invariant points and lines.

(i)

(ii)

(iii)

/

Xx = a.*!,

/

Xi =
,Xs, X3 = -.>-3

/

Xx = Cii.ri,
/

Xi = Xz,
f

/

Xx II /

Xi = c«i.ri + Xz

+ .rs

"I" C;c.!.ri> .T3

12*6 The General Polarity. Since the protluct of any two correDx-
tions is a collineation, the general correlation can be obtained l)y com-
bining the general collineation 12-51 with the special correlation

interchanges X'i and arj, thus:
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(i = 1, 2, 3)

(J = 1, 2, 3)

171

Xj = 'Zc-,ix\

(All incidences are dualized, as hx'iX'i — hXjXj.)

This correlation is a polaHty if it is equivalent to the inverse correla-
tion X'j ~ 1>CrjXi or (interchanging i and j)

'LCjiXj (i = 1> 2, 3)

This means that cji = Mj, with the same X for all i and j, so that
Cij = Xcjt = X“Cy, X“ = 1, X = ±1. But we cannot have X = — 1, as
that would make

’

0 C12 — C31

C12 0 C23

C31 ~ C23 0

= 0

Hence X 1, and cji Cij. In other words, a correlation is a polarity
if and only if the matrix of coellicients d] is symmetric.

To emphasize tliis extra condition we shall write a^,- ( = a,i) instead
of Cij. Moreover, tlie nature of a polarity is such that no confusion can
be caused by omitting the prime ['] and writing simply

12-61 A',; = XaijXj (i = 1, 2, 3)

These equations give us the polar [X] of a given point (x). Solving
them, we obtain the pole (x) of a given line [X] in the form

12-62 X, = a = I, 2, 3)

and we know that the eoeflicients are connected as follows:

c/t — Or/, yiji ~ jtij, — 8/ic

so that

dot (a,/) = A ^ 0 and det (An) = A~^

Two points (.r) and (//) are conjugate (Sec. 5*.5) if (x) lies on the polar
[F] of (?/). Since }', = ^(int/h the condition \xY\ = 0 or Sx^Fi = 0
becomes

'^'A,aijXiy/ = 0

Letting (x) vary, we see that this is the equation for the 'polar of (y). We
shall often write it in the abbreviated form

12-63 (xy) = 0
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Dually, the condition for lines [X] and [F] to be conjugate, or the equa-
tion for the pole of [F]> is

12-64 [XY] = 0

where [XY] = SS-4,:jXtFj.

The fact that a polarity induces an involution of conjugate points

on any non-self-conjugate line (5-53) may be verified by writing down
the condition for points {x, 1, 0) and (a;', 1, 0) (on the fixed line

[0, 0, 1]) to be conjugate, viz.y

aiixx' 4- ai2 (x -h x') 4- <222 = 0

As we saw at the top of page 152, this is a proper involution unless

(XilCt22 — ^^12
“

in which case Azz = 0, and the line [0, 0, 1] is self-conjugate.

For an analytic proof of Chasles’s theorem (our 5-61), we apply
the general polarity 12-61 to the vertices of the triangle of reference,

obtaining the sides

[an, a2i, asi], [<Xi2, 022? <i32]» [fli3> <123,

of another triangle. Since the result is trivial when a pair of correspond-

ing sides coincide, we may assume that at least two of 003, azu 012 are

different from zero. Then any two corresponding sides are concurrent
with

[(iz\<i\2y ciizOzz, ^23^31]

For von Staudt’s converse theorem (our 5-71), we observe that the

sides of the triangle of reference are related to the points

(fci, 1, 1), (1, A:2, 1), (1, 1, kz)

by the polarity 12-62 with An = hi and every other An ~ 1, namely,

Xx = kxXx 4” X2 4" A";}

X 2 = Xi 4” h^Xz 4" Xz
Xz = Xi 4” Xz "4" kzXz

(see Sec. 12-3, Exercise 2).

Returning to the polarity 12-61 or 12-63, we observe that the condi-

tion for (0, 1, 0) and (0, 0, 1) to be conjugate is azz = 0. Thus the

triangle of reference is self-polar if and only if

a23 ~ ^31 ~ ai2 = 0
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By choosing such a, triangle of reference we reduce a polarity to its

canonical form

Xi = auXi (i = 1, 2, 3; ana^^azz = A 0)

The coefficients an are determined by one further pole and polar, as in
5-63. In fact, if ABC is the triangle of reference while P is {Cx, C'g, Cz)
and f is [ci, C2, ca], then the polarity {ABC) (Pp) is of the above form
with an = Ci/Ci. In particular, the canonical polarity relating (1, 1, 1)

to [ci, C2 y ca] is

12*65 Xi — CiXi {i — 1, 2, 3; CiCaCa ^ 0)

So far, we have insisted that the determinant A shall not vanish.
It is interesting to see what kind of degenerate polarity remains if we
allow A = 0. The relations 12-61 still provide a unique line [X] for each
point (a:). But now all polars [X] pass through one fixed point, and each
is the polar of infinitely many (a:)’s. In fact, the vanishing of the
determinant implies the existence of numbers Zi, z^, sa, not all zero,

such that

2:aijZi = 0 (i = 1, 2, 3)

Hence, for any point (a;), :s:2aijZiXj = 0; which means that the polar
[X], satisfying Ssf.Vi = 0, always passes through a certain point (z).

Such a line [X] is also the })olar of (.t + vz) for any v.

In other words, when A = 0, there is a point (s) that is conjugate
to every ])oint (x). This universal conjugate point (z) is unique unless
all points have the same polar [A"]. This completely <legenerate case
arises when a,,- is of the form maj, so that 12-61 reduces to

Aj ai'^o-jXj

This means that all cofactors of order 2 in A vanish, or that the matrix
(oiy) is of rank 1,

If (a,:y) is of rank 2, so that (z) is uni(iue, the condition for two
points (x) aiul (v/) to be conjugate is still 12-63 and there is still an
involution of conjugate points on any line not passing through {z).

Of such a ])air of points, each is joiiu-d to (z) by the polar of the other;
thus we have an involution of conjugate lines through (z). For each
pair of lines in this involution the polarity relates every point on either
line to the other line. In this sense, the degenerate ])olarity is the
involution of conjugate lines through (z).

Dually, tlu^ transformation 12-62 with del.(/l,:y) = 0 represents
another kiiul ol degenerate polarity, such that the pole of any line lies
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on one fixed line [Z]. If the matrix (Aij) is of rank 1, we have compiete
degeneracy: all lines have the same pole. But if it is of rank 2, the line

[Z] is unique and the degenerate polarity is essentially an involution

of point pairs on [ZJ.

The above remarks may be summarized as follows

:

12*66 If (a/) is a matrix of rank S, the polarity Xi = degertcr-

ates into an invohdion of line pairs through a fixed point. Dually, if

{Ai^ is of rank 2, the polarity Xi = ZAijXj degenerates into an involutioti

of point pairs on a fixed line.

EXEJtCISEti

1. Prove Hesse’s theorem (our 5-54), using the general polarity and th«*

quadrilateral [1, ± 1, ± 1], whose vertices are

(0 , 1 , ± 1 ), (± 1 , 0
. 1 ), ( 1 , ± 1 , 0 )

2. Prove .5-02, using the triangle of reference.

3. Verify ()-21 and 0*22 as applie<l to the triangle of n^ferenee and the iiint.

line [1, 1, ll.

4. Solve Exercise (i of Sec. 7-7, using the triangh* of referenei*.

5. Use the following coordinates in Se(!. .'>•7, I^xereisc^ 2;

.1 (1, 0, 0), « (0,1,0), U' (0, 0, 1)

L (0, 1, p), M (g. 0, 1), ( {h e, 0)

li'N [0, 1, />], A'N [(?, 0, 1], A'/i' [1, n, Oj

The incidences in Fig. 421 a require

1 + ± (rli)-' = 0, 1 + rll + (;»/*)“' - 0

Verify that these equati<»ns irnjdy 1 + pP + (gQ) ' “ 0 (thus pr<>vi<ling jui

alternative proof for Pa])pus’s theorem) a.n<l pgrPQIi 1. Finally, obtain t in*

condition pgr = PQli —
1 for tlic reeipro<‘ity suggested l)y tin* above m»tati<>i»

to be induced by a polarity.

0. Verify that the relations

1 = Xfqj’l, A 1!
“ ei!.r2, A S (C;| ± Xcg).!';!

<lefine a pencil of polarities transforming the unit point (1, 1. I) into the peiicil

of lines concurrent with [0, Ca, Cj] ami [rq, 0, C3] and that this is a .st‘lf-<lual sy.s-

tem {i.e., a range as well as a pencil) if rfj = 0. S<‘tting c\ 1, we thus oHtiiiii

the system

A'l = \xu A';. — CaJ'a. A'

3

-- e 3.1*3

(cf. 5"82). Verify that the locus of j)oles of [I, 1, 1| is the line ViX'i
—

03.1*3.

7. Find the locus of j)oles of a fixed line [A”^! wo the polarities

A^ I
= j'n ± Xj’i, Xz = j’3, A’^3 = .Cl
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{Hint: Rewrite these relations as pXi = + Xari, pX-i == .1*2, pXz = a;i; then
eliminate p and X.)

12*7 Conics. The condition for a point (a:) to the self-conjugate

for the polarity 12-61 is {xx) = 0, or

+ as 3‘Vl -f- 20233*2X3 + 20313:3X1 H- 2012X1X2 = 0

Hence the polarity is elliptic or hyperbolic according as the quadratic
form (xx) (with determinant A M 0) is definite or indefinite.* In the

latter case the locus of self-conjugate points is the conicf

(xx) == 0

and the envelope of self-conjugate lines is the same conic in the form

In particular, the condition for (x) to be self-conjugate for 12*65 is

Scixf = 0; thus the canonical polarity is elliptic or hyperbolic according

as the three non vanishing coefficients Ci do or do not have the same sign,

and in the latter case the conic is

CiXi + C‘2,rl + C3X5 = 0 or
Y'i V's \'2

i:J
-I-

£1? _L ±3 « Q
Cl C2 Cz

By the coordinate t ransformation

Xi —> Ci "ix,; A"; —> Ci i A',:

we can reduce* the co(*fii<*ients to il. Then, renumbering the three

coordinates if nec(‘ssary, 12-65 becomes

12-71
1
— 3’

1 , A'3 = ±X 3

with the ni)p(*r or lower sign accorrling as the ])olarity is elliptic or

hyperbolic, fin tiu* fornn*!* ease this amounts to taking (1, 1, I) to be

one of the f(nir points (h‘seril)e<l in Sec. 7-7, Rxercisc 6,] Thus any conic

may be expr('ssed ji.s

12-72 .rf + 3-1 - .r- = 0, A1 + A'l - A';^ - 0

In this form, tin* triangle of r(‘f(*r(*nce is self-polar. Another useful

equation.

12-73 xn — X:iXi

* A nt'ccssary nn<l sufllci<‘til ronditioii for a definitfi fcn-in (or elliptic polarity) is that

the throe nanihors an. A all liav<‘ llic .same .sifjn. See Velileti and Youn^ (lief. ItJ,

p. 205).

j- He.s.se (Ref. 17) ,se<‘ms to hav** l)e<‘n the first to write tli<* <‘qiintion fora, eonie in the

form SSaija-i.iry = 0.
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12-74

(wiiere the triangle of reference is formed by two tangents and the join

of their points of contact), is derived from 12-72 by the transformation

xi —» i(a;i — xz), xz —^ X2y xz + Xz)

This exhibits the conic as the locus of the point of intersection of the

protectively related hnes Xi — txz = 0 and Xz txz = 0 , as in 6 *54 .

In other words, the conic is the locus of the point i, 1) whose
parameter is t.

Since the condition for the conic (xx) = 0 to pass through (1, 0, O)

is an = 0, the general conic circumscribing the triangle of reference is'

azzx^xz aziXzXx + anx^x^ = 0 (a^zaziaiQ 9^ 0)

The coordinate transformation

Xi —^ ^3^23^19 ^2 ^3 ^ Cll2^Z

converts this into

12*74 x^xz -
1
- XzX\ -4- XiXz = 0

or x^'^ + x^^ H- xj'^ = 0 . This exhibits the conic as the locus of trilinear

poles of lines through the unit point Xi -j- A'2 + A'3 = 0 (which is the
point described in Sec. 7 -7 , Exercise 5 ). Working out the cofactors in

the determinant, we obtain the envelope equation

a:? -f Ai + A1 - 2X2A3 - 2A3A1 - 2AiA’'2 = 0

or ± A2^ ± = 0. Dually, a conic inscribed in the triangle of

reference is

12*76 A2A3 + A3A1 + A1A2 = 0 or xi^ ± x^^ ± x^^ = 0

If A = 0 , the equation {xx) — 0 represents a degenerate conic, the
locus of self-conjugate points for a degenerate polarity (sec page
173 . One such point is {z). If {y) is another, every point collinear with

{y) and {z) must be likewise self-conjugate, since

X'Soijiyi -1- vZi){yj -h vZj) = (yy) H- ^v{yz) -f v‘^{zz) = 0

In the completely degenerate case when a,, = aiaj, the Cfqiiation

{xx) = 0 reduces to {ax}^ = 0, which is essentially the line [a]. Thus
the equation {xx) = 0 with det(at,) = 0 represents a degenerate conic

locus consisting of a single point [for example, x\ xl = 0, which is

(0, 0, 1)] or a line (for example, xi = 0) or two lines (for example,
X1X2 = 0) ; but not more than two, or the equation would involve the
product of three or more linear factors.



12-77J DEGENERATE CONICS 177

Dually, the equation [XX] = 0 with det(^y) = 0 represents a de-

generate conic envelope consisting of a line (for example, XI XI = 0

which is [0, 0, 1]) or a point (for example, Xf = 0) or two points

(for example, X1X2 = 0).*

The following result is typical of many applications of the (xy)

notation. The condition for the join of two points (x) and (y) to be a

tangent to the conic (xx) = 0 is

12*76 {xx){yy) — {xyY — 0

To see this, let {x + yy) be the point of contact of such a tangent.

The point of contact must be conjugate to both {x) and {y) ; hence

(xx -\- y,y) =0, (x + yy y) = 0
i.e.,

(xx) -f ix(xy) = 0, (xy) + y(yy) = 0

We obtain 12-76 by eliminating /x; and the argument can be reversed.

The same equation may be obtained as the degeneracy condition for

the involution

(xx) -h (xy)(fi + ii') 4- (yy)iJ.y-' = 0

of conjugate points (x + ny) and (x + y'y) on the line (x)(y).

If (y) is a fixe<l exterior point, 12-76 is the combined equation for

the two tangents that can be drawn to the conic from that point.

Dually, the conic [A"A"] = 0 meets a secant [F] in the two points

[XX][rY] ~ [XY]- = 0

For problems involving two conics, it is convenient to use the nota-

tion (xx)' — l^'^ia'ijXiXj. If two conics (xx) = 0 and (xx)' — 0 have four

points of intersection, tlie equation

12*77 (xx) + X(.xx)' = 0

represents a conic (possibly degenerate) through the same four points.

Moreover, this is the most gemn-al conic of the quadrangular pencil;

for if (//) is any fifth ])oint on such a conic, we merely have to choose

X so as to satisfy (yy) + X (////)' = 0. Taking a more general standpoint,

let us call 12-77 a pencil of conics even if the conics have no common
self-polar triangle (so t hat the definition implied in 6-82 cannot be

used). We shall find that most of the theorems about pencils remain

* The tangents to ft very snuill cii-flc visibly rescnilile a pencil of lines, enveloping ft

single point; aind the tnngents to m very fhit ellipse (with eeceiitricity nearly 1) resemble

two such pencils. See llol)Hon (Ilef. p. 07).
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valid. Extending 5-81, we observe that the polars of {y) form the pencil

of lines

{xy) + \{xyy = 0

whose center, given by solving the two equations {xy) = {xy)' = 0 for

(x), is conjugate to {y) wo every one of the conics. As for 6-81 : the poles

of a line {y) {z) all satisfy the equation

12*78 {xy){xz)' — {xz){xyy — 0

which is obtained by eliminating X from

{xy) H- X(x2
/)' = 0, {xz) + \{xzy = 0

The common conjugates of points {yy + z) on the line {y){z) satisfy

the same equation, obtained by eliminating y from

pi{xy) + {xz) — 0, y{xyy + {xz)' = 0

Desargues’ involution theorem (our 6-73 and 6-50) can be extended
as follows: The conic 12-77 passes through {fxy + z) if

+ 2m

(

2/2:) 4- {zz) -b X[m^(2/2/)' + 2/i(?/2)' H- {zz)'] = 0

By considering the sum and products of the roots of this quadratic
equation for we see that two points {my + z) and (m 2?/ -f- z) lie on
the same conic of the pencil if

(mi + M 2) [(2/2/) + Myy)'] = -
21 (2/2:) + x(2/,s)']

and

MiM 2[(2/2/) 4- X(2/2/)'] = {zz) 4- \{zz)'

Eliminating X, we obtain the equation

2m 1/^21 (2/2/)

(

2
/^)' — {yz){yyy] + (mi 4- M2) [ (;(///)

(22:)' — {zz){yy)']

4- ^[{yz){zzy — {zz){yz)'] ~ 0

which is also the condition for the points {my 4- z) and (m^// 4- z) to be
conjugate wo 12-78. Hence:

Those conics of the pencil 12-77 that meet the line {:y){z) do so in pairs

of points that are conjugate wo the conic 12-78.

In the case of a quadrangular pencil, there are three values of \ for

which 12-77 consists of a line pair. This fact is neatly einpl()ye<l in the
following proof* of Pascal’s theorem (our 7-21). Using the notation
of Fig. 7-2a, let the lines BB', CA', and AC" be [X], [F], and [Z], Then

* Robson (Ref. 34, p. 91).
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for a certain X the equation

(xx) + \{Xx}{rx] = 0

represents the line pair BA', CB'; and for a certain the equation

(xx) + fi{Xx}{Zx} = 0

represents the pair BC', AB'. Subtracting these, we obtain another
degenerate conic

{Xx} (X{Fa;} — ii{Zx]) = 0

through the common points B, B', N, L of the first two. Now, the first

line pair is BN, LB', and the second is BL, NB'; hence the third must
be BB', NL. The factor { A'a:} gives the line [X] which is BB'; therefore

NL is [XF — AiZ], concurrent with CA' and AC'.

An interesting special case of 12-78 arises when the four common
points are (1, ±1, ±1), so that the quadrangular pencil of conics is

given by

cixl + 02.r2 + czxl == 0, Cl + C2 4- cs = 0

for various values of the c’s. The polar of a fixed ])oiiit (x) is

C2a:2, c-aXa]

which continually pa,sses through the fixed point x^^, This

“ciiiadralie transronnal ion ” (.r) (;C“’) (which somewhat resembles

inv-ersioii wo a circle) transforms the points of a line [A^ into the points

of a conic

A -f" A 2'^^^ A = 0

through the vertices of t he triangle of reference. This conic is also the

locus of poles of [A'], as we sec by eliininating the c’s from

A'i = CiXi and 'Zci
— 0

EXEIlCISEfi

1. Verify 0-48 as appli<^d to the qu;idranglc (1. +1, ±1).

%. Show that a ut»i<pie conic cun l)e drawn through (1, 1, 1) to touch [0, 0, 1]

at (1, 0, 0) and fl, 0, Oj at (0, 0, 1) (cf. 0-58 and P2-78).

3. Verify Sec. (>•”>, Exercise 3, taking the exterior points p • s and g • r to be

(//) and (s). I'lic conic throngh the six points turns out to be

(•r.r)(//-) - {xu)(xz) = 0
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4. If [X] meets (xx) = 0 in two points, prove that the two lines joining these

points to another point {y) are given by

{XyWxx) — ^[Xx}[Xy](xy) + \Xx]^iyy) = 0

Hint: What value of y. will make (x + yy) lie on the conic?

5. If the sides of a variable triangle pass through three fixed points (X, 1, 0),

(1, y, 0), (1, 1, v), while the vertices opposite to the first two sides run along the

respective lines [1, 0, 0], [0, 1, 0], prove that the third vertex will trace a conic

or a line (as in 6-61 or the Exercise to Sec. 4-2). Hint: Take the triangle to be

(0, X2 — yxi, X3)(Xi — \X2, 0, X3)(,Xi, X2, X3)

6.

Show that the conics

(xx) + X(a:iy)2 = 0

form a self-dual system (Sec. 6*8; cf. 12-76). What happens when (1/) is an

interior point ?

7. Considering the conic 12-73 as the locus of (/^, 1), prove that the secant

joining the points with parameters t and is [1, — (/ + t'), U'\ and that the

tangent at the point t is [1, — 2i, Deduce the envelope equation

Xl - 4X3X, = 0

and check this by direct computation of eofactors.

8. Show that the quadratic transformation (.r) —> (.r ‘‘) transforms a conic

through two vertices of the triangle of referen<-e into a conic through the same
two vertics. How many conics are transform<'<l into tliemselves? (Six pencils.)

9. Give an analytic treatment of Sec. 7-2, Exercise 6, taking the conic in

the form 12-74, with ABC for triangle of reference. Hint: Take A i/>’iCi to be

(X, 1, — 1)(— 1, y, 1)(1, — 1, v). The point of concurrence turns out to be

(X, y, v).

12-8 The Aflane Plane: Affine and Areal Coordinates. Wc saw,

in Sec. 8T, how the affine plane can be derived from the projective

plane by removing one line. Analytically, tlie sim])lest way to do this

is to remove one side of the triangle of reference, say [0, 0, 1] or Xs = 0.

The remaining two sides are then called coordinate axes. Any point

for which Xz 7̂ 0 can be normalized (dividing through by Xz) so a.s to

take the form (a;i, Xz, 1), which can then be abhreviate<l to (xi, .To). In

this manner we obtain a unique symbol for every ordinary point. The.se

nonhomogeneous coordinates Xu x-z are called affme coor<Iinatcs.

Lines [Xi, X2 , X3], where Xi and A’^2 nre fixed while X3 varies, are

parallel, since they are concurrent with [.Yi, X2 , 0] and [0, 0, 1]. In

particular, the line [1, 0, — a;i] is parallel to the axis [1, 0, 0] and
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[0, 1, 0:2] to [0, 1, Oj. These four lines form a parallelogram whose
vertices are

(0, 0), (xi, 0), (0, 0:2), (iCi, X2)

as in Fig. 12*8a.

From the remark at the end of Sec. 11*7, xi is the abscissa of (xu 0, 1)

,

referred to

Po = (0, 0, 1), Pi = (1, 0, 1), P^ = (1, 0, 0)

Comparing this with Sec. 8*4, we see that Xi is actually the distance

from (0, 0) to (.^i, 0), in terms of the distance to (1, 0) as unit. Similarly

X2 is the distance from (0, 0) to (0, in terms of tlic distance to (0, 1)
as unit. In affine geoiiuvlry these two units are, of course, independent;
it would be meaningless to regard them as being “equal.”

The affine theory of conics can be develope<l by choosing the coordin-
ate axes in convenient positions: c.//., an ellipse for which the coordinate
axes are conjugat<‘ diameters can l)c taken in the form

12-81 .
7*2 4. J.2 1

while a ])arjd>ola touching t.lu' axis ;ri = 0 at (0, 0) is

xl = 2 .1:

,

and a hyp(-rbola whose asymptotes arc the coordinate axes is

X\X-i == 1

The first of these three* ecjuations reminds us of a circle. This is natural
enough when wo remember t hat all Liu* aJIlne ])roi)erties of theeirele are proper-
ties of the ellipse. \V(* may <*ven regard the ellipse as the loeus of (cos t, sin t),

interjireting t as twice tin* ar<*a of the s(*etor from (1, 0) to (cos t, sin t). Simi-
larly, the hy])erl)ola

A - xl = 1
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(for which the coordinate axes are a pair of conjugate diameters) is the locus of

(cosh t, sinh t), where t is twice the area of the sector from (1, 0) to that point

(as we may easily verify by integration).

Instead of [0, 0, 1] we might take the line at infinity to be [1, 1, 1].

Then (1, 1, 1), the trilinear pole of this line, is the centroid of the

triangle of reference, and (0, 1, 1), etc., are the mid-points of the sides.

It follows that the ratio of the distances of (0, Xz) from (0, 1, 0) and

(0, 0, 1) (measured in opposite directions) is Xz/x^, and that the areas

of the three triangles joining (aii, x^, Xz) to the sides of the triangle of

reference are proportional to xiix^ixz. Accordingly, these are called

areal coordinates. [By a well-known result in vector analysis, (aO is the

centroid of masses Xu iCa, Xz at the vertices of the triangle of reference.]

Since the line at infinity is Xi -\- X2. xz = 0, any ordinary point

can be normalized so that Xx x^ + Xz = 1. The effect is the same as

if we took affine coordinates in three dimensions (analogous to the two-

dimensional affine coordinates defined above), restricting attention to

the plane whose equation is

Xx Xz Xz — ^

Then the vectors Xi, Xs (page 169) ]>roceed along the three

coordinate axes.

We have seen how the areal coordinates of a point nuiy he measured

as areas. But what about the areal coordinates of a line?

12*82 The areal coordinates of a line arc proportional to its distances

from the three vertices of the triangle of reference. *

Proof: By similar triangles, these distances have tlic same ratios in

whatever directions they are measured, provided l.liat tlic direction is

the same for all three vertices. In particular, we may measure them

along the side [1, 0, 0]. Since [Xi, Xz, Xs] meets [1, 0, 0] in tlic point

(0, X3, —Xz), its distances from (0, 1, 0) and (0, 0, 1) are —X-y.Xz

measured in opposite directions, or measnn'd in the same

direction. By symmetry, the distances from all thre(‘ verliet‘s, nn'asured

in the same direction, are A"i:A’' 2 :X3 .

This agrees nicely with the fact that we obtain a parallel line if we

increase A'l, A^2 , Xz all by the same amount.

EXEIiCItSES

1. Show that the affine equation

otti-ri “h 2c[ia2M^2 "f" az2x\ — 1 (A == a^z — awawi)

* Salmon (Ref. S8, p. 11).
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represents a hyperbola if A > 0, two parallel lines if A = 0; but if A < 0 it

represents an ellipse or nothing according as Ou is positive or negative. In the

case of a hyperbola, what is the combined equation for the asymptotes?

2. Find the locus and envelope areal equations of the parabola that touches

[0, 0, 1] at (1, 0, 0) and [1, 0, 0] at (0, 0, 1).

3. Show that the areal equation

H~ Caa’l = 0

represents a parabola if

Ci^ ~h ^2
^ -|- Cg ^ — 0

4.

Show that (.In + ^112 + /lia. ‘•I21 H" A 22 H- .^4 23, -<4 31 H" ^32 + An)

is the center of a nondegenerate conic whose areal equation is (xx) = 0 or

[XX] = 0. Show further that the conic is a hyperbola if A has the same sign as

-(- ^22 -|- /I33 -f- a/lag + iAn + 2.<4 i 2, in which case the asymptotes are

given by

(^11 + A 22 + -I 33 + 2/1 23 + 2.431 + 2/li2)(.r.r) = (.ri + ^2 + Xs)'^

12-9 The Euclidean Plane: Cartesian and Trilinear Coordinates.

We saw, ill Sec. 9-1, how a Euclidean metric can be introduced into

the affine plane by singling out an elliptic involution in the line at

infinity, with the result that a circle lias this for its involution of

conjugate points on tliat line. In particular, wo derive rectangular

Cartesian coordinates from affine coordinates by calling 12-81 a

circle of radius 1, so that the absolute involution relates (.Ci, X2 ^ 0) and

(^1, H'l, 0), where

12-91 XvUi + = 0

The dilatation 12-54 truiisforms 12-81 into a circle of radius p:

0 I Q O

•f*i + XI = p~

The translation 12-5.) (with .1-3 — 1) transforms this into the general

circle

(.ri - r,)“ -t- (.r-j — Co)” = p'

as in classical ana,lyt ic geometry.

Areal coordinates ladong, as we have seen, to the affine plane. They

may still l)e (‘inployeil afUn- the introduction of a Euclidean metric

(when tlici triangle: of rc‘f(M-(‘ne<‘ acejuires definite lengths for its

sides, say a, h, c); hut for many purposes it is desirable to make the

transformation

.ri — > (/.cj, •^2 bx2> Xz CXz
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to trilinear coordinates, which are proportional to the distances of the

point considered from the three sides, so that the unit point is the

incenter (instead of the centroid) and the line at infinity is [a, h, c].

In terms of the angles A, By C oi the triangle of reference ABCy any

f)oint on the perpendicular from A to BC is at distances from CA and

AB which are proportional to cos Ci cos B. Since

a — h cos C — c cos B = 0

the point at infinity on this altitude line is (1, — cos C, — cos jB), and

the absolute involution is the degenerate polarity

{

xi = Xi — X2 cos 6' — X3 cos B
Xa = —Xi cos C + — X3 cos A
Xz = —Xi cos B — X2 cos A + A’'3

which relates [1, 0, Q] to (1, — cos (7, — cos /?), and so on. Thus the

condition for two lines [A"] and [F] to be pcrpondicnlar is*

XiFi + X2F2 + X3F3 — (X2F3 + A3I2) cos A
- (X3F1 + A^Fa) cos B - (A^F. -f X2F1) cos 0 = 0

Now, the left side of this equation is the polarizcul form of the

expression

12 = X] + X2 + X| — 2X2X3 cos A — 2X3A”! cos B — 2A'] A' 2 cos 0

Since the polarized form of ^\yX\ [zX\ is {?/A"} j^F} + [sA'l {/yF}, it

follows that any two perpendicular lines through either of two ]>oints

(2/) and (2) are conjugate wo any conic of the form

[yX}{zX\ - X12 = 0

Hence any conic with foci (?/) and (2) (see Sec. 9-7) has such an equa-

tion; and by varying X we obtain a range of confocal conics.

Making {y) and (2) coincide, we obtain the ecjualion

12-93 {2A"}2 _ \ii = 0 (\ > 0)

for a circle with center (z). Different values of X yield a s(‘lf-dnal system

of concentric circles. The poles of any fixed line wo such a range of

circles form a range of points whose parameter X is a linear function of

the distance of such a point from the center (2). In fact, as this distance

vanishes with X, it is actually proportional to X. By 9-41, it is also

proportional to the square of the radius. But the condition for the

circle 12-93 to touch the line [1, 0, 0] is

* Salmon (Ref. 37, p. 59).
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2?
- X = 0

Hence, if Zu 2=2, 23 are the actual distances of (z) from the three sides of

the triangle of reference, the circle with center (s) and radius p is

precisely

{zX}“ — = 0

In particular, the incircle (for which 2i — S2 = 23 = p = r) is

(Xi -}- Xz + Xz)^ — = 0

or

Z2Z3 cos 2 iA H- XzXi cos 2 iB + X1X2 cos 2 iC = 0

or

ajii cos i-A + cos ± Xz^ cos = 0

and the circumcircle (for which p = R and Zi = R cos A,

etc.) is

(Xi cos A X2 cos J5 + Z3 cos C)^ — 12 = 0

or

(Zi sin A)i ± (Z2 sin B)i ± (Z3 sin C)^ = 0

or

(aZi)i + (6Z2)i ± (cXz)i = 0

or

ax^xz + bxzXi + CX1X2 = 0

EXERCISES
1. Using Cjirtesian coordinates, identify the absolute involution 12*91 with

the degenerate polarity

j*i = X2 = Z2, Xz = 0

Deduce the condition for lines

Ai.ri + A' «.»*.. + A'^s == 0 ' and Fiori + F2a;2 + K3 = 0

to be perpendicular:

AiFi + X2V2 = 0

2. Obtain the Cartesian (‘iivelopc ccpiation

(s.X, + 32Z2 + Xzy - p‘^(A'l + A'l) = 0

for the circle with center (si, Sa) and radius p.

3. Verify the <h‘gcnera<‘y <jf 12*92.

4. If the trilinear c(juation SSa£/.ri.ry = 0 represents a pair of lines, prove

that the condition for these lines to be perpendicular is

On + ciii + “ 2a ,>3 COS A — 203 1 cos B — 2a 12 cos C — 0
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5. Prove that the feet of the perpendiculars from any point on the circum-

circle to the sides of the triangle lie on a line (Simson line)

.

6. Find trilinear coordinates for the mid-points of the sides and the feet of

the altitudes. Verify that they satisfy the equation

(ax\ + hxi + cx^(xi cos A x% cos B xz cos C)
— Si{ax^z + bxzXi -1- c.'Cia;2) = 0

or

a;i sin %A + x\ sin + x\ sin 2C

— {xi sin A -jr ^2 sin P + ara sin C)(a:i cos A -h xz cos I? + 0:3 cos C) = 0

(the nine-point circle).

7. By examining the involution of conjugate points on the line at infinity

axi -j- bxz -h cxz = 0, verify that any circle may be expressed in the form

(aa;i + bxz + cx3)(yiXi + V2X 2 + Vzxz) — X(aa;2X3 + bxz^ri + cxixz) — 0

8. Show that the incenter, centroid, circumcenter, orthocenter, and nine-

point center of the triangle of reference ABC have trilinear coordinates

(1, 1, 1), (cos A, cos B, cos 0),

(sec A, sec B, sec C) and (cos (/i — (J), cos (C — .1), cos {A — B))

Verify that the last four all lie on the Euler lino

[sin 2A sin (B — C), sin 2B sin (O' — A), sin ^2C sin (.1 — />*)]



APPENDIX I

TEE COMPLEX PROJECTIVE PLANE

Many books have been written on a more elaborate geometry where

the coordinates of jjoints and lines, instead of being real numbers,

are complex numbers.* A large part of the development of Chap. 12

can be carried over. Even the criterion v/ti < 0 for separation (Sec.

12-4) remains significant, provided that we remember that a number
cannot be negative without being real, (Thus “v/// < O’* no longer

means that fx andi/ have “opposite signs”: they might be both imagin-

ary.) The general i)c)int collinear with (a) and (6) is (o + vh)y where v

is any complex number. Three collinear points

(a), (6), (a -h fib)

determine a so-called chain, of points (a -f- vb) where vffx is real. Thus
the line contains infinitely many chains, and instead of 3*31 we have

two points decom}iosing a chain into two segments. Actually all but

one of the axiom,s of real projective (/eometrij apply also to complex pro-

jective (jeometry. The single exception is 3T4, which is false if the four

points do not all Ix'long to the same chain. In jdace of that axiom we
have the synthetic definition for a chain, as consisting of three collinear

points d, Hy C along with tlie three segments BC/A, CA/B, AB/C.
In this terminology, 3-14 states that the chain covers the whole line,

which is just what ha])j)ens in real geometry but not in complex
geometry.

Thus everything in (’hap. 2 remains valid, but those later results

which depeml on 314 (<lire<*tly or imlirectly) are lia])le to be contra-

dicted. An interesting example is 3-3,3, which is cotitradictc<l by the

following configuration: The nine points defined by llie equations

a-'if -f xl x-l = X 1X2X3 = 0

* For a good exposition of llaniillon’s appronch to ooniplex numbers, sec Rol)inson

(Ref. 32 , pp. It is hanlly ne<'essary to luld that the words real ajul imaginary are

picturesque relics of an age when the nature <jf complex nuinhers was not yet clearly

understood.

187
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viz.^

(0, 1, -1), (0, 1, -co), (0, 1, -co2)

(- 1 , 0, 1 ), (-«, 0, 1 ), (-o>^ 0 , 1 )

(1, -1, 0), (1, -0), 0), (1, -co2, 0)

where ct> = gSiri/s^
IJ0 threes on IS distinct lines in such a way that

any two of the points lie on one of the lines. These nine points are the

conamon inflexions of the cubic curves

+ \x1XiX3 = 0

The classification of projectivities is actually simpler in complex
than in real geometry. For now every projectivity has one or two invar-

iant points, and a line cannot fail to meet a conic. On the other hand,

besides the projectivity relating (a + vb) to (a' + vb') there is also

an antiprojectivity relating (a + pb) to (a' + vb'), where p is the com-
plex conjugate of v. Both these transformations preserve the harmonic
relation. Similarly, there is not only a projective collineation 12-51 but

also an antiprojective collineation

x'i
= 'ZcijXj

The projective polarity 12-61 always determines a conic {xx) = 0; but

there is also an antiprojective polarity

Xi = ZaijXj- (a,-,; = aij)

whose self-conjugate points form an “anticonic” (xx) —
0.

Many results in real geometry are most easily obtained by regarding

the real plane as part of the complex plane, so that a real line appears

as a chain on a complex line. This method is especially valuable in the

theory of circles; for the absolute involution has two invariant points

(the circular points at infinity, discovered by Poncelet in 1813), and a

circle is most simply defined as a conic that passes through these two
points. *

* Salmon (Ref. 38, p. 1).
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